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Abstract

The Ring Learning with Errors (RLWE) problem is widely believed
to be computationally hard and underpins many modern
cryptographic constructions. Its security is supported by a
reduction from worst-case problems on ideal lattices to
average-case instances of RLWE.

We introduce ideal lattices arising from cyclotomic fields and
explain the RLWE problem. We then explore methods to find mildly
short vectors in ideal lattices, emphasizing the role of the plus and
the minus class groups. We consider the growth of class numbers
and discuss different parameter choices for RLWE that can
influence the hardness of the underlying approximate shortest
vector problem.
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Overview

Topics

Lattices and ideal lattices

The Ring Learning with Errors (RLWE) problem

The approximate Shortest Vector Problem (SVP) in ideal lattices

Class numbers and new parameters for RLWE

3 / 33



Ring-LWE, Ideal Lattices and Class Numbers

Lattices

Lattices in Euclidean Space

Lattice

A lattice Λ is a discrete subgroup of an n-dimensional Euclidean vector
space V . A full-rank lattice is defined by a basis v1,v2, . . . ,vn ∈ V such
that

Λ = {x1v1 + x2v2 + · · ·+ xnvn | xi ∈ Z}.

If B is the matrix whose columns are the coordinates of v1, . . . ,vn in an
orthonormal basis, then

Λ = {Bx | x ∈ Zn}.

The space of all lattices can be identified with GLn(R)/GLn(Z).
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Lattices

Lattices in Euclidean Space

Example: Different Bases of a Lattice

A lattice can admit many distinct bases. For example,

B1 =

{(
4
−1

)
,

(
2
2

)}
, B2 =

{(
8
−7

)
,

(
10
−10

)}
.

B1 is illustrated with solid lines and B2 with dashed lines.
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Lattices

Lattices in Euclidean Space

Determinant and Lattice Volume

The basis B = (v1, . . . ,vn) defines the fundamental parallelepiped

P = {x1v1 + · · ·+ xnvn | xi ∈ [0,1)}.

The lattice volume is the absolute determinant and can also be
computed using the Gram matrix of inner products:

det(Λ) = |det(B)|=
√

det(vi · vj)1≤i,j≤n.

This quantity represents the volume of P and is invariant under a
change of basis.

v1

v2

v3
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Lattices

Dual Lattice

Dual Lattice

Definition

Given lattice Λ, the dual lattice is

Λ∗ = {y ∈ V | x · y ∈ Z for all x ∈ Λ}.

If Λ has basis matrix B, then

Λ∗ = {(BT )−1x | x ∈ Zn},

and consequently,

det(Λ∗) =
1

det(Λ)
.
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Lattices

Computational Problems

Computational Problems

The following lattice problems are considered to be hard, even for
quantum computers:

1 Shortest Vector Problem (SVP): Find the shortest nonzero
vector in Λ.

2 Shortest Independent Vector Problem (SIVP): Find n linearly
independent lattice vectors each as short as possible.

3 Closest Vector Problem (CVP): Given w ∈ V , find the closest
lattice vector to w .

Note: There are also easy lattice problems, such as testing
membership in Λ.
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Lattices

Computational Problems

Approximate Lattice Problems

Definition (Approximate SVP)

Let γ ≥ 1. If v is the shortest lattice vector of Λ, any w ∈ Λ satisfying

∥w∥ ≤ γ ∥v∥

solves SVPγ.

Approximations within polynomial γ(n) remain computationally hard;
exponential factor approximations are feasible in polynomial time.
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Lattices

Ideal Lattices

Ideal Lattices

Let K =Q(ζm) be the cyclotomic field of degree n = ϕ(m). Its ring of
integers is R = OK = Z[ζm]. The canonical embedding

σ : K → Cn, x 7→ (σ1(x), . . . ,σn(x)),

is defined by the n = s1 +2s2 embeddings σ of K into R or C. The
image is contained in the subspace H ∼= K ⊗QR= KR of dimension n
over R defined by xs1+s2+j = xs1+j .

The image of a fractional ideal I ⊂ K is a lattice in H. We endow H
with the inner product < , > induced by Cn. The inner product of
x ,y ∈ K satisfies

Tr(x · y) =< x ,y >

where Tr : K →Q is the trace map. This defines an ℓ2-norm on K .
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Lattices

Ideal Lattices

Volume of Ideal Lattices

The ring of integers R = OK is a lattice of volume

vol (R) =
√
|∆K |

where b1, . . . ,bn is an arbitrary Z-basis of R and

∆K = det(Tr(bibj)1≤i, j≤n)

denotes the absolute discriminant of K . For fractional ideal I ,

vol (I ) = N(I )
√
|∆K | .
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Lattices

Ideal Lattices

Bounds on Shortest Vector Lengths

Define the root discriminant:

δK = vol (R)1/n =
√
|∆K |

1/n

For fractional ideal I , the shortest lattice vector length λ1(I ) satisfies

√
n N(I )1/n ≤ λ1(I )≤

√
n N(I )1/n

δK

Proof.

Lower bound follows from the AM-GM inequality, and the upper bound
follows from Minkowski’s theorem.

Note: The Gaussian heuristic estimates

λ1(I )≈
√

n/(2πe)vol (I )1/n.
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Lattices

Ideal Lattices

Duality

Let I be a fractional ideal. The dual ideal I∨ is

I∨ = {x ∈ K | Tr(xI )⊂ Z}.

The embedding relates the dual ideal I∨ to the conjugate of the dual
lattice:

σ(I∨) = σ(I )∗

For R = Z[ζm], the dual ideal R∨ is the codifferent

R∨ =
1

Φ′
m(ζm)

R,

where Φm denotes the m-th cyclotomic polynomial.

Example

R∨ = 1
2k−1 R for m = 2k and R∨ =

(1−ζp)
p R if m = p is prime.
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Lattices

RLWE

Ring-LWE Problem

Let K =Q(ζm) and R = Z[ζm]. Choose modulus q ≡ 1 (mod m) of
polynomial size in n. Set Rq = R/(q) and R∨

q = R∨/(qR∨). Sample a
secret s ∈ R∨

q uniformly at random. For random a ∈ Rq and error
e ∈ KR/qR∨ from a spherical Gaussian with parameter r , define

b = a · s+e.

Search RLWE Problem: Given pairs (a,b), find s.

Decision RLWE Problem: Distinguish (a,b) from uniform random
pairs.
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Lattices

RLWE

Dual vs Non-Dual RLWE

RLWE initially uses the dual lattice R∨, but practical schemes often
use a scaled RLWE variant with R:

Multiplying by a generator t =Φ′
m(ζm) of the different ideal gives

b = as+e,

with a,s ∈ Rq and e an elliptical Gaussian error.

For power-of-two cyclotomics, one has t = m
2 . Hence scaling

preserves spherical error shape.
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Lattices

RLWE

Efficient Ring Multiplication via NTT

Since q splits completely in R, we have the Chinese Remainder
decomposition

Rq
∼= ∏

i∈Z×
m

R/qi
∼= ∏

i∈(Z/mZ)×
Zq,

where qi = (q,ζm −ωi
m) and ωm ∈ Zq is a primitive m-th root of unity.

This allows multiplication in Rq to be performed efficiently via the
Number-Theoretic Transform (NTT).
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Lattices

RLWE

Worst-case to average-case reduction for RLWE

RLWE has a worst-case to average-case reduction for ideal lattices.

Theorem (Lyubashevsky, Peikert, Regev)

Suppose RLWE is defined as above and assume that the error
elements are drawn from a Gaussian distribution with parameter
r ≥ 2ω(

√
log(n)) in each coordinate. There is a polynomial-time

quantum reduction from the worst-case SVP problem on ideals in K to
within approximation factor Õ(

√
nq/r) to the average-case search

RLWE problem.

There is a similar reduction for the decision RLWE problem. This
provides theoretical security grounding for RLWE-based cryptography.
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Ideal-SVP

Hardness

Hardness of Ideal-SVP

Theorem (Cramer, Ducas, Wesolowski)

Ideal-SVP in the worst case can be solved in quantum polynomial time
for approximation factor exp(Õ(

√
n)).

This contrasts with an approximation factor exp(Θ(n)) for general
lattices, revealing a hardness gap.
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Ideal-SVP

Approaches

Recent Approaches to Ideal-SVP

Two major steps in recent attack approaches:

1 Solve the Principal Ideal Problem (PIP) — find short generators
of principal ideals.

2 Solve the Close Multiple Problem (CMP) — reduce general ideals
to principal ones via multiplication by short ideals.

These reduce Ideal-SVP to seemingly easier subproblems involving
class groups and unit lattices.
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Ideal-SVP

Approaches

Mildly short vectors in Ideals

Let a be a given ideal. Find a small ideal integral b and c such that abc
is principal. Suppose one can solve CMP and N(bc)≤ exp(Õ(n1+c))
for c < 1

2 . Furthermore, suppose one can solve the principal ideal
problem for abc and find a generator g such that

∥g∥ ≤ N(abc)1/n exp(Õ(
√

n))≤ N(a)1/n exp(Õ(
√

n))

Then g solves the shortest vector problem for a to within a
sub-exponential approximation factor.
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Ideal-SVP

PIP

Principal Ideal Problem (PIP)

Given a principal ideal a⊂ R, find a generator h such that

∥h∥ ≤ N(a)1/n exp(Õ(
√

n)).

1 Find any generator g.
2 Use the logarithmic embedding

Log : K× → R[G]/(1− τ),

where τ denotes the complex conjugation. Let C be the
multiplicative group of cyclotomic units. Then the lattice Log(C)
has full rank in a subspace of codimension 1 and a set of short
generators. Find u ∈ C ⊂ R× such that Log(u) is close to
Log(g), which is a CVP problem in the lattice Log(C). Then
Log(g)−Log(u) = Log(gu−1) is short and h = gu−1 is a mildly
short generator.
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Ideal-SVP

CMP

Close Multiple Problem (CMP)

Solve the Close Multiple Problem (CMP): given an ideal a, multiply by
short ideals such that the product is a principal ideal.

The ideal class group Cl(K ) = I (K )/P(K ) (fractional ideals modulo
principal ideals) plays an important role in solving CMP.

Let Cl(K+) be the class group of the maximal real subfield
K+ =Q(ζm +ζ−1

m ) and define Cl−(K ) by the exact sequence

1 −→ Cl−(K )−→ Cl(K )
NK/K+

−→ Cl(K+)−→ 1.

We denote the associated class numbers by h(K ), h+(K ) and
h−(K ) = h(K )/h+(K ).
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Ideal-SVP

CMP

Close Multiple Problem (CMP)

1 Given a, find a small ideal b such that the class of ab is in
Cl−(K ). To this end, multiply a with random short ideals such
that the product ab lands in Cl−(K ).

2 Construct an ideal c such that abc is principal. Use the fact that
the Stickelberger ideal annihilates Cl(K ). The projected
Stickelberger ideal gives a sublattice of Z[G]/(1+ τ) and has
short generators. Find a set of short Z[G]-generators of Cl−(K )
and expand ab (in quantum polynomial time) with respect to that
factor base. Then reduce the coefficients using the Stickelberger
lattice. This yields a short ideal b′ in the same class as ab. Define
c= (b′)−1. Then abc is a principal ideal.

Success depends on properties of plus and minus parts of class
groups.
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Class Numbers

Plus Part h+(K )

Plus Part h+(K )

The plus part h+(K ) often equals 1 and is notoriously difficult to
compute.

Theorem (Sinnott)

Let K =Q(ζm) and let C+ be the subgroup of cyclotomic units of K+.
Then C+ is of finite index in (R+)× and

2bh+(K ) = [(R+)× : C+],

where b depends on the number of distinct prime factors of m.
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Class Numbers

Plus Part h+(K )

Numerical Results on h+(K )

Computations by Schoof for primes p < 105 (up to a factor that is
probably 1) suggest slow polynomial growth of h+(K ).
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Class Numbers

h−

Minus Part of the Class Number

The analytic class number formula gives:

h−(K ) = Qw ∏
χ odd

(−1
2

B1,χ)

where χ runs over odd Dirichlet characters of Gal(K/Q) = (Z/mZ)×
and B1,χ are Bernoulli numbers. The constants Q and w depend on m:

Q =

{
1 if m = pk

2 otherwise
and w =

{
2m if m is odd

m otherwise
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Class Numbers

h−

Numerical Results on h−(K )

log(h−(K )) is bounded by Õ(m).
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Class Numbers

h−

Growth of h−(K )

h−(K ) depends more on n = ϕ(m) than on m.

500 1000 1500 2000
n

500

1000

1500

2000

log(h − (K))

28 / 33



Ring-LWE, Ideal Lattices and Class Numbers

Class Numbers

Iwasawa Theory

Growth of Class Numbers via Iwasawa Theory

Let p be a prime and K =Q(ζm) with p | m and p2 ∤ m. Define
Kr =Q(ζmpr ); the cyclotomic Zp-tower K = K0 ⊂ K1 ⊂ K2 ⊂ . . . is a
classical setting of Iwasawa theory. The p-part of h(Kr ) grows as

pλpr+c

for large r , where λp is the Iwasawa λ-invariant of the tower. Similarly,
one defines λ+

p and λ−
p .

Conjecture (Greenberg): λ+
p (K ) = 0.

For every fixed ℓ ̸= p, the ℓ-part of Cl(Kr ) remains bounded along the
tower.
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Class Numbers

Iwasawa Theory

Lambda-Invariants

Let K =Q(ζp). Then λ−
p (K ) = 0 if and only if p ∤ h−(K ). In this case,

p is called a regular prime, which plays an important role in the proof
of Fermat’s Last Theorem. It is predicted that e−1/2 ≈ 60.65% of all
primes are regular.

More generally, for K =Q(ζm) with p | m and p2 ∤ m, the p-adic
L-functions attached to Dirichlet characters χ of
Gal(K/Q)∼= (Z/mZ)× have associated Iwasawa invariants λp(χ),
and λ−

p (K ) aggregates the contributions from odd characters.

There is a conjecture (and numerical evidence) from Delbourgo and K.
regarding the distribution of λp(χ)-invariants.
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Rings and Parameters

Power-of-2 Cyclotomics

RLWE Parameters with Power-of-Two Cyclotomics

Most RLWE-based cryptographic schemes use power-of-two
cyclotomic fields K =Q(ζ2k ) due to efficiency and simple structure.
Usually,

h+(K ) = 1, and λ2(K ) = 0.

m ϕ(m) h+(K ) log(h−(K )) Example q with q ≡ 1 mod m
256 128 1 43.79 3329, 7681

512 256 1 126.17 3329
#

, 8380417
1024 512 1∗ 335.21 12289, 260 −210 ·512 ·6700417
2048 1024 1∗ 841.34 12289, 18433, 40961

#: q ≡ 1 mod m
2

∗: Conjectural values
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Rings and Parameters

Alternative Parameters

Alternative Parameters

Prime cyclotomic fields K =Q(ζp) may offer harder Ideal-SVP
problems:

m = p ϕ(m) h+(K ) log(h−(K )) λ−
p (K ) Example q

257 256 3 126.04 1 1543, 9767
401 400 45 238.64 1 3209, 4813
641 640 495 453.42 0 3847, 12821
1297 1296 275 1139.16 2 5189, 20753
3547 3546 16777 3996.52 0 21283
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Conclusion

Summary and Open Problems

Using cyclotomic rings other than power-of-two may strengthen
Ideal-SVP hardness and cryptographic security.

Large class numbers add complexity to attacks based on class
group structure.

No known efficient reduction from RLWE to Ideal-SVP.

There are reductions from MLWE to RLWE and from Module-SVP
to Ideal-SVP, but in practice MLWE schemes are becoming
preferred.

The dual and non-dual RLWE forms are equivalent but differ in
error distribution properties.

For prime cyclotomics, error distortion of non-dual RWLE forms
complicates direct hardness assumptions.

33 / 33


	Overview
	Lattices
	Lattices in Euclidean Space
	Dual Lattice
	Computational Problems
	Ideal Lattices
	RLWE
	RLWE

	Ideal-SVP
	Hardness
	Approaches
	PIP
	CMP

	Class Numbers
	Plus Part h+(K)
	h-
	Iwasawa Theory

	Rings and Parameters
	Power-of-2 Cyclotomics
	Alternative Parameters

	Conclusion

