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Ring-LWE, Ideal Lattices and Class Numbers

Abstract

The Ring Learning with Errors (RLWE) problem is widely believed
to be computationally hard and underpins many modern
cryptographic constructions. Its security is supported by a
reduction from worst-case problems on ideal lattices to
average-case instances of RLWE.

We introduce ideal lattices arising from cyclotomic fields and
explain the RLWE problem. We then explore methods to find mildly
short vectors in ideal lattices, emphasizing the role of the plus and
the minus class groups. We consider the growth of class numbers
and discuss different parameter choices for RLWE that can
influence the hardness of the underlying approximate shortest
vector problem.
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L Overview

Topics

m Lattices and ideal lattices

m The Ring Learning with Errors (RLWE) problem

m The approximate Shortest Vector Problem (SVP) in ideal lattices
m Class numbers and new parameters for RLWE

3/33



Ring-LWE, Ideal Lattices and Class Numbers
L*Lanwes

LLatti(:es in Euclidean Space

Lattice

A lattice A is a discrete subgroup of an n-dimensional Euclidean vector
space V. A full-rank lattice is defined by a basis vy, Vs, ..., v, € V such
that

AN={xvi+xovo+---+xpvp | X; € Z}.
If B is the matrix whose columns are the coordinates of vq,...,v,in an
orthonormal basis, then

A={Bx|xeZ"}.

The space of all lattices can be identified with GL,(R)/GLn(Z).
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LLatti(:es in Euclidean Space

Example: Different Bases of a Lattice

A lattice can admit many distinct bases. For example,

()0} =-{()(3)

B is illustrated with solid lines and B, with dashed lines.
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LLatti(:es in Euclidean Space

Determinant and Lattice Volume

The basis B = (v, ..., v,) defines the fundamental parallelepiped
P={xivi+-+xvn | xi €[0,1)}.

The lattice volume is the absolute determinant and can also be
computed using the Gram matrix of inner products:

det(A) = |det(B)] = /det(vi-vj)i<jcn.
This quantity represents the volume of P and is invariant under a

change of basis.
v o 7

Vi
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L Dual Lattice

Dual Lattice

Given lattice A, the dual lattice is

N={yeV|x-yeZforalxecA}.

If A has basis matrix B, then
N = {(BT)_1x | xeZ"},
and consequently,

1
det(A)’

det(A*) =
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LComputational Problems

Computational Problems

The following lattice problems are considered to be hard, even for
quantum computers:

Shortest Vector Problem (SVP): Find the shortest nonzero
vector in A.

Shortest Independent Vector Problem (SIVP): Find n linearly
independent lattice vectors each as short as possible.

Closest Vector Problem (CVP): Given w € V, find the closest
lattice vector to w.

Note: There are also easy lattice problems, such as testing
membership in A.
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LComputational Problems

Approximate Lattice Problems

Definition (Approximate SVP)

Let y> 1. If v is the shortest lattice vector of A, any w € A satisfying

w] <vllvl
solves SVP,.

Approximations within polynomial y(n) remain computationally hard;
exponential factor approximations are feasible in polynomial time.
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L Ideal Lattices

Ideal Lattices

Let K = Q({m) be the cyclotomic field of degree n = @(m). Its ring of
integers is R = Ok = Z[{m]. The canonical embedding

6:K—=C" x—(c1(x),...,0n(x)),

is defined by the n = s; 4+ 2s, embeddings ¢ of K into R or C. The
image is contained in the subspace H = K ®g R = Kg of dimension n
over R defined by Xs, +s,+; = Xs, 1

The image of a fractional ideal I C K is a lattice in H. We endow H
with the inner product < , > induced by C". The inner product of
X,y € K satisfies

Tr(x-y)=<x,y >

where Tr : K — Q is the trace map. This defines an £>-norm on K.
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L Ideal Lattices

Volume of Ideal Lattices

The ring of integers R = Ok is a lattice of volume
vol (R) = /| Ak
where by, ..., b, is an arbitrary Z-basis of R and
Ak = det(Tr(bibj)1<i,j<n)
denotes the absolute discriminant of K. For fractional ideal I,

vol (I) = N(I)v/|Ag] .
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L Ideal Lattices

Bounds on Shortest Vector Lengths

Define the root discriminant:

8 = vol (R)!/" = /[Ax] "

For fractional ideal I, the shortest lattice vector length A4 () satisfies
Vn N(DYT <0 (1) < V/n NIV 8

Lower bound follows from the AM-GM inequality, and the upper bound
follows from Minkowski’s theorem. O

Note: The Gaussian heuristic estimates

M (1) ~ v/n/(2me)vol (1),
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L Ideal Lattices

Duality

Let I be a fractional ideal. The dual ideal IV is
V={x€eK|T(xI)CZ}.

The embedding relates the dual ideal IV to the conjugate of the dual
lattice:

o(1')=o(I)*
For R = Z[C], the dual ideal R is the codifferent

v 1
A

where &, denotes the m-th cyclotomic polynomial.

Example
R\/

sirRform=2Kand RV = (- g")I%’|f m = pis prime.
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Ring-LWE Problem

Let K = Q({m) and R = Z[Lm]. Choose modulus g =1 (mod m) of

polynomial size in n. Set R, = R/(q) and R, = R"/(qR"). Sample a

secret s € Rg uniformly at random. For random a € R, and error

e € Kr/qR" from a spherical Gaussian with parameter r, define
b=a-s+e.

Search RLWE Problem: Given pairs (a, b), find s.

Decision RLWE Problem: Distinguish (a, b) from uniform random
pairs.
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Dual vs Non-Dual RLWE

RLWE initially uses the dual lattice R, but practical schemes often
use a scaled RLWE variant with R:

Multiplying by a generator t = &/, (L) of the different ideal gives
b=as+e,
with a,s € Ry and e an elliptical Gaussian error.

For power-of-two cyclotomics, one has t = % Hence scaling
preserves spherical error shape.
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Efficient Ring Multiplication via NTT

Since q splits completely in R, we have the Chinese Remainder
decomposition

f?q &= I_I F?/qi = I_I ZZq,
i€Zm i€(Z/mZ)*

where q; = (g,m — ©),) and ®n, € Z4 is a primitive m-th root of unity.

This allows multiplication in R, to be performed efficiently via the
Number-Theoretic Transform (NTT).
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LF{LWE

Worst-case to average-case reduction for RLWE

RLWE has a worst-case to average-case reduction for ideal lattices.

Theorem (Lyubashevsky, Peikert, Regev)

Suppose RLWE is defined as above and assume that the error
elements are drawn from a Gaussian distribution with parameter

r > 2w(+/log(n)) in each coordinate. There is a polynomial-time
quantum reduction from the worst-case SVP problem on ideals in K to
within approximation factor O(1/nq/r) to the average-case search
RLWE problem.

There is a similar reduction for the decision RLWE problem. This
provides theoretical security grounding for RLWE-based cryptography.
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L Hardness

Hardness of Ideal-SVP

Theorem (Cramer, Ducas, Wesolowski)

Ideal-SVP in the worst case can be solved in quantum polynomial time
for approximation factor exp(O(+/n)).

This contrasts with an approximation factor exp(©(n)) for general
lattices, revealing a hardness gap.
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Recent Approaches to Ideal-SVP

Two major steps in recent attack approaches:

Solve the Principal Ideal Problem (PIP) — find short generators
of principal ideals.

Solve the Close Multiple Problem (CMP) — reduce general ideals
to principal ones via multiplication by short ideals.

These reduce Ideal-SVP to seemingly easier subproblems involving
class groups and unit lattices.
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Mildly short vectors in ldeals

Let a be a given ideal. Find a small ideal integral b and ¢ such that abc
is principal. Suppose one can solve CMP and N(bc) < exp(O(n'*¢))
for c < % Furthermore, suppose one can solve the principal ideal
problem for abc and find a generator g such that

lgll < N(abe)'/"exp(O(v/n)) < N(a)"/"exp(O(v/n))

Then g solves the shortest vector problem for a to within a
sub-exponential approximation factor.
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L*Ideal—SVP
Lpip

Principal Ideal Problem (PIP)

Given a principal ideal a C R, find a generator h such that
1Al < N(a)'/"exp(O(v/n)).

Find any generator g.
Use the logarithmic embedding

Log: K* — R[G]/(1—1),

where T denotes the complex conjugation. Let C be the
multiplicative group of cyclotomic units. Then the lattice Log(C)
has full rank in a subspace of codimension 1 and a set of short
generators. Find u € C C R* such that Log(u) is close to
Log(g), which is a CVP problem in the lattice Log(C). Then
Log(g) — Log(u) = Log(gu™") is short and h = gu™" is a mildly
short generator.
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Close Multiple Problem (CMP)

Solve the Close Multiple Problem (CMP): given an ideal a, multiply by
short ideals such that the product is a principal ideal.

The ideal class group CI(K) = I(K)/P(K) (fractional ideals modulo
principal ideals) plays an important role in solving CMP.

Let CI(K™) be the class group of the maximal real subfield
KT =Q({m+C,,'") and define CI~(K) by the exact sequence

NK/K+

1— CI"(K) — CI(K) —= CI(KT)—1.

We denote the associated class numbers by h(K), h*(K) and
h™(K) = h(K)/h"(K).
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Close Multiple Problem (CMP)

Given a, find a small ideal b such that the class of ab is in
CI~(K). To this end, multiply a with random short ideals such
that the product ab lands in CI~ (K).

Construct an ideal ¢ such that abc is principal. Use the fact that
the Stickelberger ideal annihilates CI/(K). The projected
Stickelberger ideal gives a sublattice of Z[G]/(1 + ) and has
short generators. Find a set of short Z[G]-generators of C/~ (K)
and expand ab (in quantum polynomial time) with respect to that
factor base. Then reduce the coefficients using the Stickelberger
lattice. This yields a short ideal b’ in the same class as ab. Define
¢ = (b')"". Then abc is a principal ideal.

Success depends on properties of plus and minus parts of class
groups.
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Plus Part h*(K)

The plus part h™(K) often equals 1 and is notoriously difficult to
compute.

Theorem (Sinnott)

Let K = Q(&n) and let C™ be the subgroup of cyclotomic units of K.
Then C™ is of finite index in (R™)* and

2°h*(K) =[(R")*: C"],

where b depends on the number of distinct prime factors of m.
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L Pius Part A (K)

Numerical Results on h™ (K)

Computations by Schoof for primes p < 10° (up to a factor that is
probably 1) suggest slow polynomial growth of At (K).
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[

Minus Part of the Class Number

The analytic class number formula gives:

(k) = aw [T (- 5B1)
X odd

where  runs over odd Dirichlet characters of Gal(K/Q) = (Z/mZ)*
and By 5 are Bernoulli numbers. The constants Q and w depend on m:

1 ifm=p~ 2m if mis odd
Q= and w= )
2 otherwise m  otherwise
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Ly

Numerical Results on h™ (K)

log(h~(K)) is bounded by O(m).

log(h ™ (K))
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Ly

Growth of h™ (K)

h~(K) depends more on n = @(m) than on m.

log(h ™~ (K))
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Growth of Class Numbers via Iwasawa Theory

Let p be a prime and K = Q({,) with p | m and p? t m. Define
Kr = Q(Cmpr); the cyclotomic Zpy-tower K =Ko C Ky C K C ... is a
classical setting of Iwasawa theory. The p-part of h(K;) grows as

pkpr—i-c

for large r, where kp is the lwasawa A-invariant of the tower. Similarly,
one defines A.¥ and A, .

Conjecture (Greenberg): k;(K) =0.

For every fixed ¢ # p, the ¢-part of CI(K;) remains bounded along the
tower.
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L Iwasawa Theory

Lambda-Invariants

Let K = Q(Cp). Then A, (K) = 0if and only if p{ h~(K). In this case,
p is called a regular prime, which plays an important role in the proof
of Fermat's Last Theorem. It is predicted that e~ 1/2 ~ 60.65% of all
primes are regular.

More generally, for K = Q({,,) with p | m and p? f m, the p-adic
L-functions attached to Dirichlet characters ¥, of

Gal(K/Q) = (Z/mZ)* have associated lwasawa invariants A,(),
and k;(K ) aggregates the contributions from odd characters.

There is a conjecture (and numerical evidence) from Delbourgo and K.
regarding the distribution of A, ()-invariants.
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RLWE Parameters with Power-of-Two Cyclotomics

Most RLWE-based cryptographic schemes use power-of-two
cyclotomic fields K = Q({,«) due to efficiency and simple structure.
Usually,

h(K)=1, and A(K)=0.

m o(m) | h"(K) | log(h™(K)) | Example g with g=1 mod m
256 | 128 |1 43.79 3329, 7681

512 | 256 |1 126.17 3329”7, 8380417

1024 | 512 | 1* 335.21 12289, 2%0 — 210.512.6700417
2048 | 1024 | 1* 841.34 12289, 18433, 40961

#:9=1 mod
*: Conjectural values
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LAlternative Parameters

Alternative Parameters

Prime cyclotomic fields K = Q({,) may offer harder Ideal-SVP

problems:
m=p | ¢(m) | h"(K) | log(h~(K)) | A, (K) | Example g
257 256 3 126.04 1 1543, 9767
401 400 45 238.64 1 3209, 4813
641 640 495 453.42 0 3847, 12821
1297 1296 | 275 1139.16 2 5189, 20753
3547 3546 | 16777 | 3996.52 0 21283
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LfConduﬂon

Summary and Open Problems

m Using cyclotomic rings other than power-of-two may strengthen
Ideal-SVP hardness and cryptographic security.

m Large class numbers add complexity to attacks based on class
group structure.

m No known efficient reduction from RLWE to Ideal-SVP.

m There are reductions from MLWE to RLWE and from Module-SVP

to Ideal-SVP, but in practice MLWE schemes are becoming
preferred.

m The dual and non-dual RLWE forms are equivalent but differ in
error distribution properties.

m For prime cyclotomics, error distortion of non-dual RWLE forms
complicates direct hardness assumptions.
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