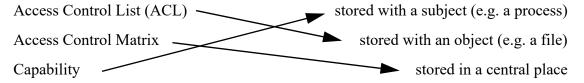
Prof. Dr. Carsten Vogt Exercises "Operating Systems and Distributed Systems 2" 2019/20



Access Control - Solution

Exercise 1: Techniques for Access Control

Draw three arrows from the terms on the left to the corresponding explanations on the right:
 Access Control List (ACL)
 stored with a subject (e.g. a process)
 Access Control Matrix
 stored with an object (e.g. a file)
 Capability
 stored in a central place

Solution:

Exercise 2: Rights Management in a Pipelining System

- Given: A processing system with two stages
 - Process P₁
 - · reads data from an input file INPUT
 - processes the data by executing the program in the program file PROG₁
 - writes intermediate results into the file INTERMEDIATE
 - Process P₂
 - reads data from the file INTERMEDIATE
 - processes the data by executing the program in the program file PROG₂
 - writes the final results into the file OUTPUT
- Questions:
 - What are the subjects, what are the objects in this system?

Solution: Subjects: P₁, P₂; objects: INPUT, PROG₁, INTERMEDIATE, PROG₂, OUTPUT

• Which operations can be executed on the objects in principle?

Solution: read (R), write (W), execute (X)

- What access rights must the subjects have for the objects ...
 - ... specified by an access control matrix?

Solution:

	INPUT	PROG ₁	INTER- MEDIATE	PROG ₂	OUTPUT
P ₁	R	X	W	-	-
P ₂		-	R	X	W

• ... specified by access control lists?

Solution:

INPUT: (P_1,R) PROG₁: (P_1,X)

INTERMEDIATE: $(P_1, W), (P_2, R)$

 $PROG_2$: (P_2,X) OUTPUT: (P_2,W)

• ... specified by capabilities?

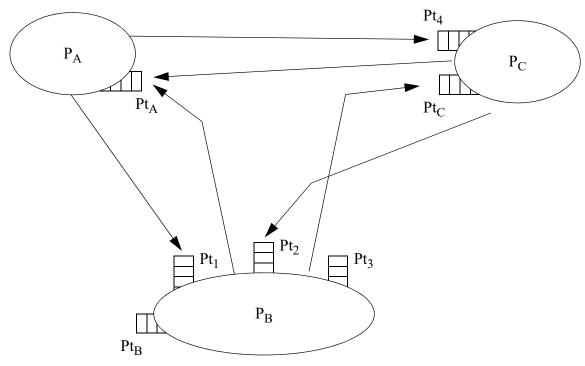
Solution:

P₁: (INPUT, R), (PROG₁, X), (INTERMEDIATE, W) P₂: (INTERMEDIATE, R), (PROG₂, X), (OUTPUT, W)

Exercise 3: Rights Management in a Client-Server System

- Given: A client-server system of processes. The processes offer and use services
 - Processes P_A, P_B, P_C
 - Services:
 - P_B offers the services S₁, S₂, S₃.
 - P_C offers the service S₄.
 - P_A uses the services S₁ and S₄.
 - P_C uses the service S₂.
 - Ports:
 - For each service S_i: One request port Pt_i
 - All requests for service S_i are sent to port Pt_i.
 - For each process P_X : One response port Pt_X
 - All responses to process P_X are sent to port Pt_X
 (no matter which of the servers is sending the response)
 - Remember (from chapter 5, foils 6 and 7):
 A port is a mailbox to which multiple processes may write data but from which only one process may read data the process to which the port is attached.

 Ports are e.g. used in client-server systems to transmit the clients' requests and the servers' responses.
 - Diagram showing a part of the system:



Explanation:

 P_{C} offers $S_{4} \rightarrow Pt_{4}$ is attached to P_{C} P_{A} uses $S_{4} \rightarrow P_{A}$ sends messages to Pt_{4} P_{A} receives replies $\rightarrow Pt_{A}$ is attached to P_{A} P_{C} replies to $P_{A} \rightarrow P_{C}$ sends messages to Pt_{A}

- Do the following:
 - Complete the diagram.

Solution:

- Note: The arrows (representing the messages) go into ports but have their origins directly in processes, not in ports!
- Define the security model:
 - Which are the subjects, which are the objects?

Solution: subjects P_A, P_B, P_C; objects Pt₁, Pt₂, Pt₃, Pt₄, Pt_A, Pt_B (Pt_B is not really required here), Pt_C

• Which operations can be executed on the objects in principle?

Solution: read, write

• Give the capability lists of the subjects.

Solution:

- P_A : (Pt_A,R) , (Pt_1,W) , (Pt_4,W)
- P_B : (Pt_B,R) , (Pt_1,R) , (Pt_2,R) , (Pt_3,R) , (Pt_A,W) , (Pt_C,W)
- P_C: (Pt_C,R), (Pt₄,R), (Pt₂,W), (Pt_A,W)