6. Datenbanken und XML
6.0 Einfihrung

XML (eXtended Markup Language) definiert ein Format fiir Textdateien, das sich sehr
gut als Austauschformat zwischen verschiedenen Softwaresystemen (z.B. zwischen
Datenbanken und anderen Systemen) eignet. Jedes Standarddatenbanksystem bietet
eine Exportschnittstelle an, um die Inhalte eines Datenbanksegments als XML-Datei zu
exportieren.

BSP.1: Der Inhalt einer RDB Tabelle LAND wird mittels einer XML—Exportschnitt-
stelle als XML-Datei exportiert (Diese Aktivitdt wurde im 1. Praktikum mittels eines
RDBMS-Exportwerkzeugs ausgefiihrt):

a) Inhalt der Tabelle LAND:

1 USA 1,3784 USD
2 Schweiz 1,2343 SFR
3 Japan 134,65 YEN

b) Inhalt der XML-Datei LAND.XML.:

<?xml version="1.0" encoding=""1S0-8859-1">
<TAB NAME="'LAND''>
<ROW>
<LANDNR>1</LANDNR>
<LBEZ>USA</LBEZ>
<WAEHFAKTOR>1.3784</WAEHFAKTOR>
<WAEHKENN>USD</WAEHKENN>
</ROW>
<ROW>
<LANDNR>2</LANDNR>
<LBEZ>Schweiz</LBEZ>
<WAEHFAKTOR>1.2343</WAEHFAKTOR>
<WAEHKENN>SFR</WAEHKENN>
</ROW>
<ROW>
<LANDNR>3</LANDNR>
<LBEZ>Japan</LBEZ>
<WAEHFAKTOR>134.65</WAEHFAKTOR>
<WAEHKENN>YEN</WAEHKENN>
</ROW>
</TAB>

XML ist wie HTML eine Markup-Sprache, die mit Markups bzw. Tags (engl.:
Tauende) ein Textdokument strukturiert. Wahrend bei HTML Tags sowohl fiir die
,schone Gestaltung* (Presentation, z.B. Fettdruck, Zeilenabstinde, Grofle von
Uberschriften) als auch fiir die inhaltliche Gliederung (Content, z.B. Teilung eines
HTML-Dokuments in <HEAD> und <BODY>) verwendet werden, dienen die Tags in
XML nur zur inhaltlichen Gliederung.

BSP.2: Der Aufbau eines einfachen XML-Elements, das nur aus einem Tag-Paar und
einer Nutzdatenfolge besteht:
a) Allgemeine Struktur eines einfachen XML-Elements:

CTAGNAMD o o v o o s L/ TAGNAM>
L,_wﬁﬁJL/_r—)

L,ﬁ(_,’—d’ | N
Sd'd"‘f’”‘—\‘q Nutz - Sclalh: ﬁ(t- Len
Ta_% c:\('\.\{L-q_:f[\:IQ ’n;r

TA NAM := /\/(\ W ¢ r\(D Ta u :

b) Ein einfaches XML-Element im BSP.1:
<WAEHFAKTOR>1.3784</WAEHFAKTOR>

4
BSP.3: Ein komplexes XML-Element, das eine Folge von einfacheren XML-Elemente
(Teilbdumen) und ein XML-Attribut enthélt.
a) Allgemeine Struktur eines komplexen XML-Elements:

H (3]
e A M AHvgwa = .- > _
STA ot T e A e KRR

LUTAGA weed 3 e
/ATAGA> : gt 0 B
< ql{, L,.J.f’-.|1rk,€ cAlL b via O
. -
LUTAGH ---2> % e
) P R-T-AS0
C/TATAGRN > -
L/ TAGN AR
AH\n.—\‘“ P Nowre des Abubate

b) Ein komplexes XML-Element im BSP.1:

<TAB NAME=""LAND"">
<l-- Teilbaum 1 -->
<ROW> </ROW>
<l-- Teilbaum 2 -->
<ROW> </ROwW>

<l-- Teilbaum 3 -->

<ROW> </ROW>
</TAB>
Def.1: Ein XML-Element der Form <!-- _ . . --> istein Kommentar. Die
Zeichenfolge . . . istein beliebiger Kommentartext. Kommentare diirfen nicht

innerhalb eines 6ffnenden oder schlieBenden Tags stehen.

BSP.4: Beispiel eines Kommentars:
<I-- Dieser Satz ist ein Kommentar -->

Ein komplexes XML-Element, das eine Folge von einfacheren XML-Elemente
(Teilbdumen) und ein XML-Attribut enthélt.

BSP.5:Ein komplexes XML-Element <LIT> fiir eine vollstdndige Literaturangabe:
<LIT ISBN="978-3-642-38238-3">

<VERFASSER>
<AUTOR AUNR=*“1‘>
<NAME>Al ten</NAME>

<VNAM>Heinz-Wi lhelm</VNAM>
<TITEL>Prof. Dr.</TITEL>

</AUTOR>
<AUTOR AUNR=*8*>
<NAME>Wul3 1ng</NAME>

<VNAM>Hans</VNAM>

<TITEL>Prof. Dr.</TITEL>

</AUTOR>
</VERFASSER>
<TITEL>4000 Jahre Algebra</TITEL>
<UTITEL>Geschichte — Kulturen — Menschen</UTITEL>
<AUFL NR=*2*“>aktualisierte und erganzte Auflage</AUFL>
<EJAHR JAHR=*“2014“/>
<EORT ORT1=*“Berlin‘“ ORT2=*Heidelberg*“/>
<VERLAG>Springer-Verlag</VERLAG>

</LIT>

Anm.1: Dem Designer einer XML-Struktur ist freigestellt, ob er seine Nutzdaten als
Nutzdatenfolge innerhalb eines Tag-Paares unterbringt oder ob er sie als Wert eines
XML-Attributs verwalten mochte.

Anm.2: Im obigen Beispiel treten auch XML-Elemente, die weder einen Teilbaum
noch eine Nutzdatenfolge enthalten, die vereinfacht gesagt leer sind.

a) Allgemeine Struktur eines leeren XML-Elements:

" " n ! :”...“
LTAGNAM AtA="..." ARZ="oee oo A_H_k_ : Li‘{f

|nf\w‘K\'f\;L".‘.‘%f -:i-'\f\ 55 .’\f‘k—’) Tf"%. C"iff(\
UMA S’Ch'uc(ir:_-rk 1S+

b) Leere XML-Elemente im BSP.5:
<EJAHR JAHR=*2014*/>
<EORT ORT1=*Berlin* ORT2=*“Heidelberg*“/>

6.1 XML und Datenbanken (Export / Import)

Aufgrund der Tabellenstruktur bei einem RDBMS ist der Export einer Tabelle in eine
XML-Datei nicht schwer zu programmieren. Es gilt: Die Segmentstruktur in der
Datenbank bestimmt die XML-Struktur. Die folgende Abbildung veranschaulicht den
Export / Import von einer / in eine DB-Tabelle:

- <__‘ EXPOWT e
TA L R
XL _
| THPOWTY |—— ,
(XL - RDBMS =
\ Pavser) \ = 3
SewL~ : G
stvultiuricy ke Datew strukduviev ke Dat

(Abb.1: Export / Import DB-Tabelle / XML-Datei)

Alle Nutzdaten in einer Datenbank sind strukturierte Daten. Fiir jeden Wert wij einer
Tabelle T1 gilt: Er liegt in einer Zeile i und unterliegt einem Attribut Aj. Fiir das
Attribut Aj ist im Relationenschema RS(T1) der Eintrag (Aj, dt(Aj), Wj) hinterlegt.
D.h. fiir den Wert wij ist durch Aj die Semantik und durch dt(Aj) der Datentyp
bestimmt. Daten heiflen strukturiert genau dann, wenn ihre Semantik und ihr
Datentyp bestimmt ist. D. h. Daten in einer DB sind strukturierte Daten.

Nutzdaten in einem XML-Element liegen standardméBig in einer Nutzdatenfolge vor,
die durch ein 6ffnendes und ein schlieBendes Tag gleichen Namens eingeschlossen sind

9
(z.B. <TAGNAM> wij </TAGNAM>). Dadurch bestimmt der Tag-Name formal die
Semantik des Werts. Werte haben in XML keine besonderen Datentypen. Werte sind
Zeichenfolgen. D. h. sie sind alle, grob betrachtet, vom Typ String. Daten heiflen
semistrukturiert genau dann, wenn sie eine Semantik, aber keinen Datentyp haben.
D. h. XML-Daten sind semistrukturierte Daten.

Beim Import steht man insbesondere vor folgendem Problem: Man muss
semistrukturierte Daten korrekt auf strukturierte Daten abbilden. Daher muss das
Import-Programm unter Verwendung zuséatzlicher Quellen den XML-Elementen
Datentypen fiir ihre Nutzdaten hinzufiligen, die auf Datentypen des
Zieldatenbanksystems abbildbar sind. Eine solche Quelle ist z.B. eine XML-
Grammatik, die jedem XML-Element des Dokuments einen Datentyp zuordnet.
Dieses Manko von XML veranlasste das W3C das Konzept von XML-Schema zu
entwickeln. In XML-Schema wird zu jedem XML-Dokumenttyp eine Grammatik
beschrieben, die jedem Element ein Datentyp (ein Schemaeintrag) zuordnet. Ein
strukturtreues Importprogramm verfiigt iiber einen XML-Parser, der Schemaeintrige
verarbeitet.

Literaturhinweise:
1) Th. Rottach / S. Gro83: ,,XML Kompakt“, Heidelberg, Berlin (Spektrum), 2002,
ISBN: 3-8274-1339-7 .
2) [XML-Standard]: http://www.w3c.org/TR/2004/REC-xml-20040204/ .

10
3) Ralph Steyer ,,XML und Java®, entwickler.press (Frankfurt), 2003, ISBN 3-
935042-78-17.

6.2 XML-Syntax, Hierarchiemodell, Wohlgeformtheit

Def.2: Ein XML-Dokument heif3t wohlgeformt genau dann, wenn es die Regeln der
XML-Syntax erfillt.

Def.3: Die XML-Syntax enthilt folgende acht Regeln:
(R1) Das XML-Dokument besteht aus einem Prolog und einem Dokument-Element.

(R2) Das Dokument-Element ist die Wurzel des XML-Dokuments (d.h. jedes XML-
Dokument enthilt eine Baumstruktur mit genau einem Wurzelelement und Nutzdaten,
die sich an den Blittern des Dokuments befinden. Der Baum kann eine beliebige
Verschachtelungstiefe haben).

(R3) Das Dokument-Element ist ein Element.

(R4) Jedes Element kann Kinderelemente sowie Nutzdaten beinhalten. Nutzdaten
sind Zeichenfolgen.

(R5) Jedes Element ist entweder ein Element mit leerem Eintrag oder es enthilt ein
Offnendes und ein schlieBendes Tag:

11
<Elementname> ... </Elementname> . Innerhalb eines solchen Tag-Paares
stehen ein oder mehrere Teilbdaume oder eine Zeichenfolge. Ein Element mit leerem

Eintrag besteht nur aus einem Tag, das 6ffnend und schlieBend ist:
<Elementname . . . />

(R6) Tags verschiedener Elemente diirfen sich in ihrem Giiltigkeitsbereich nicht
Uberlappen.

(R7) Offnende Tags kénnen beliebig viele oder keine Attribute haben, deren Namen
innerhalb des Tags eindeutig sein miissen. Ein Tag mit Attributen hat folgenden
Aufbau: <Elementname attl="“___*" att2="_._."“ ___. attN="___">

(R8) Der Prolog enthilt genau eine XML-Deklaration. Er kann dariiber hinaus noch
eine Dokumenttyp-Deklaration, Kommentare und Processing Instructions
beinhalten. In der XML-Deklaration wird die giiltige XML-Version und ein
normierter Zeichensatz genannt, gemédll der das Dokument formuliert ist. In der
Dokumenttyp-Deklaration wird die Verbindung zur Grammatik hergestellt, mit der
das Dokument validierend geparst werden kann (vgl. Kap. 6.3). Durch Processing
Instructions konnen z.B. Stylesheets, die der graphisch aufbereiteten Darstellung eines
XML-Dokuments in einem Browser dienen, zugeordnet werden.

BSP.6: Eine XML-Deklaration:
<?xml version=“1.0* encoding=*“1S0-8859-1* ?>

12

BSP.7: Eine Dokumenttyp-Deklaration:
<IDOCTYPE tabelleMa SYSTEM “tabelleMa.dtd*>

BSP.8: Ein minimales XML-Dokument:
<?xml version=*“1.0* encoding="“UTF-8“?>
<Wurzl> Ein karges Dokument</Wurzl>

BSP.9: Ein Dokument mit Teilbdumen:
<?xml version=“1.0* encoding=“1S0-8859-1* ?>
<Freundeskreis>
<Freund bk=*“gut‘>
<NName> Fritz </NName>
<Adr>
<Name>Mul ler</Name>
<Vname>Friederich</Vname>
<P1z>50678</Plz>
</Adr>
</Freund>
<Freund bk=“ferner‘>
<NName>0tto</NName>
<Tel>474747</Tel>
<Adr>

<Name>Schmitz</Name>
<Email>otto schmitz@gmx.de</Email>
</Adr>
</Freund>
<Freund bk=“Bier‘>
<NName>Kal le</NName>
<Kneipe>Frih</Kneipe>
</Freund>
</Freundeskreis>

13

14
Zum obigen XML-Dokument FREUNDESKREIS. XML ist in nachfolgender

Abbildung die zugehorige Baumstruktur angegeben:

£ BiﬂHkuo%*'{kl j O = Pav(Wi Kuoleu ea "l"‘ ,
T‘C‘LBEIL*'LPS |9?[.__). L)Ldv'-?-_rL

(Abb.2: Baumstruktur des Dokuments FREUNDESKREIS.XML)

15
BSP.10: Ein XML-Dokument, das strukturtreu alle Daten und Metadaten einer
Tabelle T aus einem RDBS abbildet. Hier ist T eine Artikeltabelle mit dem
Tabellenschema RS(T):
RS(T) = { (artnr,int,PRIK) , (artbez,char(30),0) , (preis,decimal(7,2), preis >=0)}

XML-Dokument mit Dokumenttyp-Deklaration:
<?xml version=“1.0* encoding="“1S0-8859-1* ?>:
<IDOCTYPE tabelleMa SYSTEM *‘“tabelleMa.dtd“>
<tabelleMa>
<tabname>Artikel</tabname>
<Zeile>
<artnr DT=*“Int“>471l</artnr>
<artbez DT=*“char(30)“>Parfum</artbez>
<preis DT=*“decimal (7,2)“>5.95</preis>
</Zeile>
<Zeile>
<artnr DT=*“Int*>4810</artnr>
<artbez DT=*“char(30)“>Seife</artbez>
<preis DT=*“decimal(7,2)“>0.45</preis>
</Zeile>

</tabelleMa>

16
6.3 DTD, Validitat

Eine Document Type Definition (=:DTD) ist eine Grammatik fiir eine Menge
strukturgleicher XML-Dokumente. Grammatiken sind Grundlagen fiir Parser. Ein
XML-Parser kann priifen, ob ein XML-Dokument sich an die in der DTD vereinbarte
Struktur halt. D.h. der Parser priift, ob das XML-Dokument in Bezug auf die DTD
korrekt oder nicht korrekt ist.

Def.4: Ein XML-Dokument heif3t valide genau dann, wenn ihm eine DTD zugeordnet
ist und wenn der Dokumentaufbau geméafl der DTD korrekt ist.

Anm.3: Die DTD wird einem XML-Dokument im Prolog zugeordnet (s. (R8) und
BSP.7)

Eine DTD besteht aus Definitionen fiir:
B1) XML-Elemente,
B2) Attributlisten von XML-Elementen,
B3) XML-Entities,
B4) Processing Instructions,
B5) Notationen.

Anm.4: Zu B3) Eine XML-Entity ist ein Sonderzeichen oder ein XML-Teildokument.
Entity-Deklarationen sind notwendig, falls Sonderzeichen wie '<',"™>',"'“' ... benotigt
werden oder falls ein XML-Dokument auf mehrere Teildokumente verteilt werden soll.

17
Zu B4) Ein Processing Instruction ist z.B. erforderlich, wenn man einem XML-
Dokument ein XSLT-Stylesheet fiir die grafische Gestaltung zuordnen will.

Zu B5)Notationen dienen dafiir, um Dateien mit Nicht-XML-Dateien in ein XML
Dokument zu integrieren.

Def.5: DTD-Definition fur XML-Elemente: Bei dieser Deklaration wird
unterschieden, (a) ob ein Element nur einen leeren Eintrag haben soll, (b) ob ein
Element nur eine Nutzdatenfolge enthalten soll (Blattelement) oder (c) ob ein Element
mindestens einen XML-Teilbaum enthalten soll.

a) Definition eines Elements mit einem leeren Eintrag:
<IELEMENT tagname EMPTY>

BSP.11: Definition: <IELEMENT EJAHR EMPTY>
Valides Element: <EJAHR JAHR=2014‘“/>

b) Definition eines Elements, das nur eine Nutzdatenfolge enthalt:
<IELEMENT tagname (#PCDATA)>

#PCDATA steht fiir parsed character data.
BSP.12: Definition: <VELEMENT TITEL (#PCDATA)>
Valides Element: <TITEL>4000 Jahre Algebra</TITEL>

c¢) Definition eines Elements, das bereits definierte XML-Elemente bzw. einen
Teilbaum enthilt: Sind E1, E2, ..., EN bereits definierte XML-Elemente, dann kann

18
ein neues Element entweder ein Tupel sein, der aus diesen Elementen gebildet wird
oder das neue Element ist eine Alternative dieser Elemente. Die Elemente E1, E2, ...,
EN gehen mit Kardinalitaten (Vielfachheiten) q1, g2, ..., gN in das neue Element ein.
Fiir alle Kardinalitaten gilt (1 <i <N):

gi = kein Eintrag <~ genaul

gi="? < hochstens 1 (0 oder 1)
gi=+ < mindestens 1 (1...n)
gi=* <~ 0 oder mindestens 1 (0...n)

(c1) Definition eines Tupel-Elements:
<IELEMENT tagname (E1 g1, E2 g2, , EN gN)>
BSP.13: Definition: <IELEMENT Zeile(artnr,artbez,preis)>
Valides Element: <Zeile>
<artnr DT=“iInt*“>4810</artnr>
<artbez DT=*“char(30)‘“>Sei1fe</artbez>
<preis DT=*“decimal (7,2)“>0.45</preis>
</Zeile>
BSP.14: Definition:<!ELEMENT Adr(Name,Email ?, Vname ?, Plz ?)>
Valides Elemente: 1) <Adr>
<Name>Mul ler</Name>
<Vname>Friederich</Vname>
<P1z>50678</Plz>

19
</Adr>

i) <Adr>
<Name>Huber</Name>
<Email>willi._huber@hobbyl.de</Email>
<P1z>88991</Plz>
</Adr>

(c2) Definition einer Alternative:
<IELEMENT tagname (E1 ql]E2 g2)>
BSP.15: Definition: <TELEMENT AdrPFSTR(Postfach|Strasse)>
1) Valides Element: <AdrPFSTR>
<Postfach>5130</Postfach>
</AdrPFSTR>
ii) Valides Element: <AdrPFSTR>
<Strasse>Heinestr.51</Strasse>
</AdrPFSTR>

Def.6: DTD-Definition fur Attributlisten von XML-Elementen: Ein XML-Element
kann mehrere Attribute haben, die als Liste angeordnet sind. Fiir jedes Attribut
folgende drei Angaben hinterlegt: a) der Attributname

b) ein sog. XML-Datentyp

c) eine Voreinstellung fiir das Attribut

zu b) Der Standardattributdatentyp ist CDATA (:= Characterdata).

zu ¢) Unterschieden werden: c¢1) ein Muss-Attribut: #REQUIRED
c2) ein Kann-Attribut: #l MPLIED
c3) ein voreingestellter Wert: “Defaultwert*
(Der Fall ¢3) impliziert #iIMPLIED)

Allgemeine Syntax der Attributlisten Deklaration:
<IATTLIST elementname
attl DT1 vl
att2 DT2 v2
attn DTn vn
>
mit: atti : Name des i-ten Attributs (1 <i<n)

DTi : XML-Datentyp des i-ten Attributs
vi : Voreinstellung des i-ten Attributs

BSP.16: Definition: <ITELEMENT EORT EMPTY>
<IATTLIST EORT
ORT1 CDATA #REQUIRED
ORT2 CDATA #IMPLIED

20

21
ORT3 CDATA #IMPLIED
>

BSP.17: XML-Schema zum XML-Dokument tabelleMa. XML (s. BSP.10). Dieses
XML-Schema ist in der Datei tabelleMa.DTD gespeichert:

<ITELEMENT
<TELEMENT
<ITELEMENT
<ITELEMENT
<ITELEMENT
<TELEMENT
<TATTLIST

DT
<TATTLIST

DT
<TATTLIST

DT

tabelleMa (tabname,zeile+)>
zeile (artnr,artbez,preis)>
tabname (#PCDATA)>

artnr (#PCDATA)>

artbez (#PCDATA)>

preis (#PCDATA)>

artnr

CDATA #REQUIRED>

artbez

CDATA #REQUIRED>

preis

CDATA #REQUIRED>

BSP.18: XML-Schema zum XML-Dokument Freundeskreis. XML (s. BSP.9). Dieses

XML-Schema ist in der Datei Freundeskreis.DTD gespeichert:
<IELEMENT Freundeskreis(Freund+)>

<IELEMENT Freund(NName,Tel?,Adr?,Kneipe?)>
<IELEMENT Adr(Name,Email?,Vname?,P1z?,0rt?)>

<IELEMENT NName (#PCDATA)>
<IELEMENT Tel (#PCDATA)>
<IELEMENT Kneipe (#PCDATA)>
<IELEMENT Name (#PCDATA)>
<IELEMENT Email (#PCDATA)>
<IELEMENT Vname (#PCDATA)>
<IELEMENT Plz (#PCDATA)>
<IELEMENT Ort (#PCDATA)>
<IATTLIST Freund

bk CDATA #IMPLIED>

Erste Lernziele zu Kap.6: Datenbanken und XML

1. Erklaren kénnen, wann ein XML-Dokument wohlgeformt ist. Hierzu die
acht wichtigen Regeln der XML-Syntax benennen kénnen. Wohlgeformte
XML-Dokumente editieren kénnen.

2. Erklaren kénnen, wann ein XML-Dokument valide ist. Den Zweck einer
DTD benennen kdnnen. DTD Definitionen fur XML-Elemente und flur
Attributlisten ausfuhren konnen.

3. Zu einem wohlgeformten XML-Dokument eine DTD als Grammatik
aufstellen konnen.

22

23
4. Den Unterschied zwischen semistrukturierten und strukturierten Daten
erklaren konnen. Eine DTD fur ein XML-Dokument, mit dem der Inhalt
einer RDB-Tabelle mit Spaltendatentypen exportiert werden soll, aufstellen
konnen.

5. Den Zweck von XML als Datenaustauschformat zwischen verschiedenen
Softwaresystemen erlautern kénnen.

