
 1
6. Datenbanken und XML
6.0 Einführung
XML (eXtended Markup Language) definiert ein Format für Textdateien, das sich sehr
gut als Austauschformat zwischen verschiedenen Softwaresystemen (z.B. zwischen
Datenbanken und anderen Systemen) eignet. Jedes Standarddatenbanksystem bietet
eine Exportschnittstelle an, um die Inhalte eines Datenbanksegments als XML-Datei zu
exportieren.
BSP.1: Der Inhalt einer RDB Tabelle LAND wird mittels einer XML–Exportschnitt-
stelle als XML-Datei exportiert (Diese Aktivität wurde im 1. Praktikum mittels eines
RDBMS-Exportwerkzeugs ausgeführt):
a) Inhalt der Tabelle LAND:
1 USA 1,3784 USD
2 Schweiz 1,2343 SFR
3 Japan 134,65 YEN

 2
b) Inhalt der XML-Datei LAND.XML:
<?xml version="1.0" encoding="ISO-8859-1">
<TAB NAME="LAND">
 <ROW>
 <LANDNR>1</LANDNR>
 <LBEZ>USA</LBEZ>
 <WAEHFAKTOR>1.3784</WAEHFAKTOR>
 <WAEHKENN>USD</WAEHKENN>
 </ROW>
 <ROW>
 <LANDNR>2</LANDNR>
 <LBEZ>Schweiz</LBEZ>
 <WAEHFAKTOR>1.2343</WAEHFAKTOR>
 <WAEHKENN>SFR</WAEHKENN>
 </ROW>
 <ROW>
 <LANDNR>3</LANDNR>
 <LBEZ>Japan</LBEZ>
 <WAEHFAKTOR>134.65</WAEHFAKTOR>
 <WAEHKENN>YEN</WAEHKENN>
 </ROW>
</TAB>

 3
XML ist wie HTML eine Markup-Sprache, die mit Markups bzw. Tags (engl.:
Tauende) ein Textdokument strukturiert. Während bei HTML Tags sowohl für die
„schöne Gestaltung“ (Presentation, z.B. Fettdruck, Zeilenabstände, Größe von
Überschriften) als auch für die inhaltliche Gliederung (Content, z.B. Teilung eines
HTML-Dokuments in <HEAD> und <BODY>) verwendet werden, dienen die Tags in
XML nur zur inhaltlichen Gliederung.
BSP.2: Der Aufbau eines einfachen XML-Elements, das nur aus einem Tag-Paar und
einer Nutzdatenfolge besteht:
a) Allgemeine Struktur eines einfachen XML-Elements:

b) Ein einfaches XML-Element im BSP.1:
 <WAEHFAKTOR>1.3784</WAEHFAKTOR>

 4
BSP.3: Ein komplexes XML-Element, das eine Folge von einfacheren XML-Elemente
(Teilbäumen) und ein XML-Attribut enthält.
a) Allgemeine Struktur eines komplexen XML-Elements:

b) Ein komplexes XML-Element im BSP.1:
<TAB NAME="LAND">
 <!-- Teilbaum 1 -->
 <ROW> </ROW>
 <!-- Teilbaum 2 -->
 <ROW> </ROW>

 5
 <!-- Teilbaum 3 -->
 <ROW> </ROW>
</TAB>

Def.1: Ein XML-Element der Form <!-- . . . --> ist ein Kommentar. Die
Zeichenfolge . . . ist ein beliebiger Kommentartext. Kommentare dürfen nicht
innerhalb eines öffnenden oder schließenden Tags stehen.
BSP.4: Beispiel eines Kommentars:
 <!-- Dieser Satz ist ein Kommentar -->
Ein komplexes XML-Element, das eine Folge von einfacheren XML-Elemente
(Teilbäumen) und ein XML-Attribut enthält.
BSP.5:Ein komplexes XML-Element <LIT> für eine vollständige Literaturangabe:
<LIT ISBN="978-3-642-38238-3">
 <VERFASSER>
 <AUTOR AUNR=“1“>
 <NAME>Alten</NAME>
 <VNAM>Heinz-Wilhelm</VNAM>
 <TITEL>Prof. Dr.</TITEL>
 </AUTOR>
 <AUTOR AUNR=“8“>
 <NAME>Wußing</NAME>
 <VNAM>Hans</VNAM>

 6
 <TITEL>Prof. Dr.</TITEL>
 </AUTOR>
 </VERFASSER>
 <TITEL>4000 Jahre Algebra</TITEL>
 <UTITEL>Geschichte – Kulturen – Menschen</UTITEL>
 <AUFL NR=“2“>aktualisierte und ergänzte Auflage</AUFL>
 <EJAHR JAHR=“2014“/>
 <EORT ORT1=“Berlin“ ORT2=“Heidelberg“/>
 <VERLAG>Springer-Verlag</VERLAG>
</LIT>

Anm.1: Dem Designer einer XML-Struktur ist freigestellt, ob er seine Nutzdaten als
Nutzdatenfolge innerhalb eines Tag-Paares unterbringt oder ob er sie als Wert eines
XML-Attributs verwalten möchte.
Anm.2: Im obigen Beispiel treten auch XML-Elemente, die weder einen Teilbaum
noch eine Nutzdatenfolge enthalten, die vereinfacht gesagt leer sind.

 7
a) Allgemeine Struktur eines leeren XML-Elements:

b) Leere XML-Elemente im BSP.5:
 <EJAHR JAHR=“2014“/>
 <EORT ORT1=“Berlin“ ORT2=“Heidelberg“/>

6.1 XML und Datenbanken (Export / Import)
Aufgrund der Tabellenstruktur bei einem RDBMS ist der Export einer Tabelle in eine
XML-Datei nicht schwer zu programmieren. Es gilt: Die Segmentstruktur in der
Datenbank bestimmt die XML-Struktur. Die folgende Abbildung veranschaulicht den
Export / Import von einer / in eine DB-Tabelle:

 8

(Abb.1: Export / Import DB-Tabelle / XML-Datei)
Alle Nutzdaten in einer Datenbank sind strukturierte Daten. Für jeden Wert wij einer
Tabelle T1 gilt: Er liegt in einer Zeile i und unterliegt einem Attribut Aj. Für das
Attribut Aj ist im Relationenschema RS(T1) der Eintrag (Aj, dt(Aj), Wj) hinterlegt.
D.h. für den Wert wij ist durch Aj die Semantik und durch dt(Aj) der Datentyp
bestimmt. Daten heißen strukturiert genau dann, wenn ihre Semantik und ihr
Datentyp bestimmt ist. D. h. Daten in einer DB sind strukturierte Daten.
Nutzdaten in einem XML-Element liegen standardmäßig in einer Nutzdatenfolge vor,
die durch ein öffnendes und ein schließendes Tag gleichen Namens eingeschlossen sind

 9
(z.B. <TAGNAM> wij </TAGNAM>). Dadurch bestimmt der Tag-Name formal die
Semantik des Werts. Werte haben in XML keine besonderen Datentypen. Werte sind
Zeichenfolgen. D. h. sie sind alle, grob betrachtet, vom Typ String. Daten heißen
semistrukturiert genau dann, wenn sie eine Semantik, aber keinen Datentyp haben.
D. h. XML-Daten sind semistrukturierte Daten.
Beim Import steht man insbesondere vor folgendem Problem: Man muss
semistrukturierte Daten korrekt auf strukturierte Daten abbilden. Daher muss das
Import-Programm unter Verwendung zusätzlicher Quellen den XML-Elementen
Datentypen für ihre Nutzdaten hinzufügen, die auf Datentypen des
Zieldatenbanksystems abbildbar sind. Eine solche Quelle ist z.B. eine XML-
Grammatik, die jedem XML-Element des Dokuments einen Datentyp zuordnet.
Dieses Manko von XML veranlasste das W3C das Konzept von XML-Schema zu
entwickeln. In XML-Schema wird zu jedem XML-Dokumenttyp eine Grammatik
beschrieben, die jedem Element ein Datentyp (ein Schemaeintrag) zuordnet. Ein
strukturtreues Importprogramm verfügt über einen XML-Parser, der Schemaeinträge
verarbeitet.
Literaturhinweise:

1) Th. Rottach / S. Groß: „XML Kompakt“, Heidelberg, Berlin (Spektrum), 2002,
ISBN: 3-8274-1339-7 .

2) [XML-Standard]: http://www.w3c.org/TR/2004/REC-xml-20040204/ .

 10
3) Ralph Steyer „XML und Java“, entwickler.press (Frankfurt), 2003, ISBN 3-

935042-78-7.
6.2 XML-Syntax, Hierarchiemodell, Wohlgeformtheit
Def.2: Ein XML-Dokument heißt wohlgeformt genau dann, wenn es die Regeln der
XML-Syntax erfüllt.
Def.3: Die XML-Syntax enthält folgende acht Regeln:
(R1) Das XML-Dokument besteht aus einem Prolog und einem Dokument-Element.
(R2) Das Dokument-Element ist die Wurzel des XML-Dokuments (d.h. jedes XML-
Dokument enthält eine Baumstruktur mit genau einem Wurzelelement und Nutzdaten,
die sich an den Blättern des Dokuments befinden. Der Baum kann eine beliebige
Verschachtelungstiefe haben).
(R3) Das Dokument-Element ist ein Element.
(R4) Jedes Element kann Kinderelemente sowie Nutzdaten beinhalten. Nutzdaten
sind Zeichenfolgen.
(R5) Jedes Element ist entweder ein Element mit leerem Eintrag oder es enthält ein
öffnendes und ein schließendes Tag:

 11
<Elementname> ... </Elementname> . Innerhalb eines solchen Tag-Paares
stehen ein oder mehrere Teilbäume oder eine Zeichenfolge. Ein Element mit leerem
Eintrag besteht nur aus einem Tag, das öffnend und schließend ist:
<Elementname . . . />

(R6) Tags verschiedener Elemente dürfen sich in ihrem Gültigkeitsbereich nicht
überlappen.
(R7) Öffnende Tags können beliebig viele oder keine Attribute haben, deren Namen
innerhalb des Tags eindeutig sein müssen. Ein Tag mit Attributen hat folgenden
Aufbau: <Elementname att1=“...“ att2=“...“ ... attN=“...“>

(R8) Der Prolog enthält genau eine XML-Deklaration. Er kann darüber hinaus noch
eine Dokumenttyp-Deklaration, Kommentare und Processing Instructions
beinhalten. In der XML-Deklaration wird die gültige XML-Version und ein
normierter Zeichensatz genannt, gemäß der das Dokument formuliert ist. In der
Dokumenttyp-Deklaration wird die Verbindung zur Grammatik hergestellt, mit der
das Dokument validierend geparst werden kann (vgl. Kap. 6.3). Durch Processing
Instructions können z.B. Stylesheets, die der graphisch aufbereiteten Darstellung eines
XML-Dokuments in einem Browser dienen, zugeordnet werden.
BSP.6: Eine XML-Deklaration:
 <?xml version=“1.0“ encoding=“ISO-8859-1“ ?>

 12
BSP.7: Eine Dokumenttyp-Deklaration:
 <!DOCTYPE tabelleMa SYSTEM “tabelleMa.dtd“>

BSP.8: Ein minimales XML-Dokument:
 <?xml version=“1.0“ encoding=“UTF-8“?>
 <Wurz1> Ein karges Dokument</Wurz1>

BSP.9: Ein Dokument mit Teilbäumen:
<?xml version=“1.0“ encoding=“ISO-8859-1“ ?>
<Freundeskreis>
 <Freund bk=“gut“>
 <NName> Fritz </NName>
 <Adr>
 <Name>Müller</Name>
 <Vname>Friederich</Vname>
 <Plz>50678</Plz>
 </Adr>
 </Freund>
 <Freund bk=“ferner“>
 <NName>Otto</NName>
 <Tel>474747</Tel>
 <Adr>

 13
 <Name>Schmitz</Name>
 <Email>otto_schmitz@gmx.de</Email>
 </Adr>
 </Freund>
 <Freund bk=“Bier“>
 <NName>Kalle</NName>
 <Kneipe>Früh</Kneipe>
 </Freund>
</Freundeskreis>

 14
Zum obigen XML-Dokument FREUNDESKREIS.XML ist in nachfolgender
Abbildung die zugehörige Baumstruktur angegeben:

(Abb.2: Baumstruktur des Dokuments FREUNDESKREIS.XML)

 15
BSP.10: Ein XML-Dokument, das strukturtreu alle Daten und Metadaten einer
Tabelle T aus einem RDBS abbildet. Hier ist T eine Artikeltabelle mit dem
Tabellenschema RS(T):
RS(T) = { (artnr,int,PRIK) , (artbez,char(30),) , (preis,decimal(7,2), preis >=0)}
XML-Dokument mit Dokumenttyp-Deklaration:
<?xml version=“1.0“ encoding=“ISO-8859-1“ ?>:
<!DOCTYPE tabelleMa SYSTEM “tabelleMa.dtd“>
<tabelleMa>
 <tabname>Artikel</tabname>
 <Zeile>
 <artnr DT=“int“>4711</artnr>
 <artbez DT=“char(30)“>Parfüm</artbez>
 <preis DT=“decimal(7,2)“>5.95</preis>
 </Zeile>
 <Zeile>
 <artnr DT=“int“>4810</artnr>
 <artbez DT=“char(30)“>Seife</artbez>
 <preis DT=“decimal(7,2)“>0.45</preis>
 </Zeile>
 ...
</tabelleMa>

 16
6.3 DTD, Validität
Eine Document Type Definition (=:DTD) ist eine Grammatik für eine Menge
strukturgleicher XML-Dokumente. Grammatiken sind Grundlagen für Parser. Ein
XML-Parser kann prüfen, ob ein XML-Dokument sich an die in der DTD vereinbarte
Struktur hält. D.h. der Parser prüft, ob das XML-Dokument in Bezug auf die DTD
korrekt oder nicht korrekt ist.
Def.4: Ein XML-Dokument heißt valide genau dann, wenn ihm eine DTD zugeordnet
ist und wenn der Dokumentaufbau gemäß der DTD korrekt ist.
Anm.3: Die DTD wird einem XML-Dokument im Prolog zugeordnet (s. (R8) und
BSP.7)
Eine DTD besteht aus Definitionen für:
 B1) XML-Elemente,
 B2) Attributlisten von XML-Elementen,
 B3) XML-Entities,
 B4) Processing Instructions,
 B5) Notationen.
Anm.4: Zu B3) Eine XML-Entity ist ein Sonderzeichen oder ein XML-Teildokument.
Entity-Deklarationen sind notwendig, falls Sonderzeichen wie '<', '>', ' “ ',... benötigt
werden oder falls ein XML-Dokument auf mehrere Teildokumente verteilt werden soll.

 17
Zu B4) Ein Processing Instruction ist z.B. erforderlich, wenn man einem XML-
Dokument ein XSLT-Stylesheet für die grafische Gestaltung zuordnen will.
Zu B5)Notationen dienen dafür, um Dateien mit Nicht-XML-Dateien in ein XML
Dokument zu integrieren.
Def.5: DTD-Definition für XML-Elemente: Bei dieser Deklaration wird
unterschieden, (a) ob ein Element nur einen leeren Eintrag haben soll, (b) ob ein
Element nur eine Nutzdatenfolge enthalten soll (Blattelement) oder (c) ob ein Element
mindestens einen XML-Teilbaum enthalten soll.
a) Definition eines Elements mit einem leeren Eintrag:
 <!ELEMENT tagname EMPTY>
BSP.11: Definition: <!ELEMENT EJAHR EMPTY>
 Valides Element: <EJAHR JAHR=“2014“/>
b) Definition eines Elements, das nur eine Nutzdatenfolge enthält:
 <!ELEMENT tagname (#PCDATA)>
#PCDATA steht für parsed character data.
BSP.12: Definition: <!ELEMENT TITEL (#PCDATA)>
 Valides Element: <TITEL>4000 Jahre Algebra</TITEL>
c) Definition eines Elements, das bereits definierte XML-Elemente bzw. einen
Teilbaum enthält: Sind E1, E2, …, EN bereits definierte XML-Elemente, dann kann

 18
ein neues Element entweder ein Tupel sein, der aus diesen Elementen gebildet wird
oder das neue Element ist eine Alternative dieser Elemente. Die Elemente E1, E2, …,
EN gehen mit Kardinalitäten (Vielfachheiten) q1, q2, …, qN in das neue Element ein.
Für alle Kardinalitäten gilt (1 ≤ i ≤ N):
 qi = kein Eintrag genau 1
 qi= ? höchstens 1 (0 oder 1)
 qi= + mindestens 1 (1...n)
 qi= * 0 oder mindestens 1 (0...n)
(c1) Definition eines Tupel-Elements:
 <!ELEMENT tagname (E1 q1, E2 q2, … …, EN qN)>
BSP.13: Definition: <!ELEMENT Zeile(artnr,artbez,preis)>
 Valides Element: <Zeile>
 <artnr DT=“int“>4810</artnr>
 <artbez DT=“char(30)“>Seife</artbez>
 <preis DT=“decimal(7,2)“>0.45</preis>
 </Zeile>
BSP.14: Definition:<!ELEMENT Adr(Name,Email ?, Vname ?, Plz ?)>
Valides Elemente: i) <Adr>
 <Name>Müller</Name>
 <Vname>Friederich</Vname>
 <Plz>50678</Plz>

 19
 </Adr>

 ii) <Adr>
 <Name>Huber</Name>
 <Email>willi.huber@hobby1.de</Email>
 <Plz>88991</Plz>
 </Adr>

(c2) Definition einer Alternative:
 <!ELEMENT tagname (E1 q1|E2 q2)>
BSP.15: Definition: <!ELEMENT AdrPFSTR(Postfach|Strasse)>

i) Valides Element: <AdrPFSTR>
 <Postfach>5130</Postfach>
 </AdrPFSTR>

ii) Valides Element: <AdrPFSTR>
 <Strasse>Heinestr.51</Strasse>
 </AdrPFSTR>

Def.6: DTD-Definition für Attributlisten von XML-Elementen: Ein XML-Element
kann mehrere Attribute haben, die als Liste angeordnet sind. Für jedes Attribut
folgende drei Angaben hinterlegt: a) der Attributname
 b) ein sog. XML-Datentyp
 c) eine Voreinstellung für das Attribut

 20
zu b) Der Standardattributdatentyp ist CDATA (:= Characterdata).
zu c) Unterschieden werden: c1) ein Muss-Attribut: #REQUIRED
 c2) ein Kann-Attribut: #IMPLIED
 c3) ein voreingestellter Wert: “Defaultwert“
 (Der Fall c3) impliziert #IMPLIED)

Allgemeine Syntax der Attributlisten Deklaration:
 <!ATTLIST elementname
 att1 DT1 v1
 att2 DT2 v2

 attn DTn vn
 >

mit: atti : Name des i-ten Attributs (1 ≤ i ≤ n)
 DTi : XML-Datentyp des i-ten Attributs
 vi : Voreinstellung des i-ten Attributs
BSP.16: Definition: <!ELEMENT EORT EMPTY>
 <!ATTLIST EORT
 ORT1 CDATA #REQUIRED
 ORT2 CDATA #IMPLIED

 21
 ORT3 CDATA #IMPLIED
 >

BSP.17: XML-Schema zum XML-Dokument tabelleMa.XML (s. BSP.10). Dieses
XML-Schema ist in der Datei tabelleMa.DTD gespeichert:
<!ELEMENT tabelleMa (tabname,zeile+)>
<!ELEMENT zeile (artnr,artbez,preis)>
<!ELEMENT tabname (#PCDATA)>
<!ELEMENT artnr (#PCDATA)>
<!ELEMENT artbez (#PCDATA)>
<!ELEMENT preis (#PCDATA)>
<!ATTLIST artnr
 DT CDATA #REQUIRED>
<!ATTLIST artbez
 DT CDATA #REQUIRED>
<!ATTLIST preis
 DT CDATA #REQUIRED>

BSP.18: XML-Schema zum XML-Dokument Freundeskreis.XML (s. BSP.9). Dieses
XML-Schema ist in der Datei Freundeskreis.DTD gespeichert:
<!ELEMENT Freundeskreis(Freund+)>
<!ELEMENT Freund(NName,Tel?,Adr?,Kneipe?)>
<!ELEMENT Adr(Name,Email?,Vname?,Plz?,Ort?)>

 22
<!ELEMENT NName (#PCDATA)>
<!ELEMENT Tel (#PCDATA)>
<!ELEMENT Kneipe (#PCDATA)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Email (#PCDATA)>
<!ELEMENT Vname (#PCDATA)>
<!ELEMENT Plz (#PCDATA)>
<!ELEMENT Ort (#PCDATA)>
<!ATTLIST Freund
 bk CDATA #IMPLIED>

Erste Lernziele zu Kap.6: Datenbanken und XML

1. Erklären können, wann ein XML-Dokument wohlgeformt ist. Hierzu die
acht wichtigen Regeln der XML-Syntax benennen können. Wohlgeformte
XML-Dokumente editieren können.

2. Erklären können, wann ein XML-Dokument valide ist. Den Zweck einer
DTD benennen können. DTD Definitionen für XML-Elemente und für
Attributlisten ausführen können.

3. Zu einem wohlgeformten XML-Dokument eine DTD als Grammatik
aufstellen können.

 23
4. Den Unterschied zwischen semistrukturierten und strukturierten Daten

erklären können. Eine DTD für ein XML-Dokument, mit dem der Inhalt
einer RDB-Tabelle mit Spaltendatentypen exportiert werden soll, aufstellen
können.

5. Den Zweck von XML als Datenaustauschformat zwischen verschiedenen
Softwaresystemen erläutern können.

