4. Hierarchische und netzwerkartige Datenbankmodelle
4.1 Hierarchische Datenbanken

Hierarchien kénnen durch Baumgraphen beschrieben werden. Datenséatze einer
hierarchischen Datenbank (HDB) sind in Segmenten organisiert. Segmente enthalten
Datensétze gleichen Aufbaus.

AA L A2 AR] ---JAn

B24)82|R3 BHJ ci|er]es CK 1
: =)

Logische Abhangigkeiten in Form von Hierarchien werden in einer HDB dadurch
verwaltet, dass Children-Segmente einem Parent-Segment untergeordnet werden. Die
Segmente stehen in einer baumartigen Anordnung.

BSP.1: Eine Versandauftragsdatenbank (VSA) mit den Segmenten VSA-Stamm
(Parent) und den Children-Segmenten VSA-Position (VSA-Pos) und Packmittel.

ol

VSh - -
|
Stavwr |
L
,x" \‘
—_—k 1 —]
| VSA - Pos PacKuailkL
]
- tlk.','. l{ l 2)
S (VSA-Pos) = (fog. Mv, AW - Nv Pos - My e .

: . '
S (TlJ' i = 1 PPOS_ N~ v Porl{n\-_r'u"\; {--l,l.-.-_-.~-"_ y ! i

Die Hierarchie wird durch Pointer-Ketten (Listen) implementiert, in denen jeweils ein
Parent-Datensatz auf eine Liste von Children-Datensétze zeigt.

VIA_A
I | PackA
| | |
;_POM T | Packl rl

‘I = 5
' PDb [‘—] J

Eine Anfragesprache fiir hierarchische Datenbanken vom Typ IMS® ist die Sprache
DLI (Data Language Interface). Diese baut auf der hierarchischen Struktur auf:

Einfugeoperation: ISRT : notwendige Parameter: (DS, E_Seg [, P_Seg, PRIK_Parent])
mit:

DS = einzufligender Datensatz,

E_Seg = Name des Segments, in das der DS eingefuigt werden soll,

P_Seg = Name des Parentsegmentes,

PRIK_Parent = PRIK-Wert des libergeordneten Parent-Datensatzes

Leseoperationen: a) Direktzugriff auf einen Datensatz in einem Segment (GetUnique)
Parameter: Segmentname, PRIK-Segment

b) Sequentielles Weiterlesen im Segment nach einem erfolgreichen GetUnique
(GetNext) Parameter: Segmentname

c) Lesen aller Datensatze in einem Children-Segment, die einem Parentdatensatz
untergeordnert sind (GetNext within Parent) Parameter: PRIK _Parent,
Ch_Segmentname

4.2. Netzwerkartige Datenbanken (vgl. Vossen, S.83-114)

Netzwerkartige Datenbanken sind standardisiert worden durch CODASYL (Conference
on Data Systems Language). Das NW-Datenbankmodell besteht aus folgenden
Elementen: (1) Segmente: Datensatze gleicher Art werden jeweils in einem Segment

organisiert. (Bsp.: Segment = LINIE, Segment = BHF (Bahnhof), Segment = Hpkt
(Haltepunkt)

(2) Sets (Mathematisch: Mengen): 1 Datensatz eines Segmentes A wird mit n
Datensétzen eines Segmentes B verknupft sein. (Bsp.: Setl: ,,Linie verbindet®: 1 Linie

verbindet n Bahnhofe. Set2: ,,ist Haltepunkt von®: 1 Bahnhof ist Haltepunkt von n
Linien.

5%‘ | : 4
— el i~ Ll
#L// & Hy

Ein modernes DBMS, das netzwerkartige Graphen verwalten kann und somit ein
NWDBMS (netzwerkartiges DBMS) ist, ist Neo4J. Neo4J ist im Zusammenhang mit
der neueren Diskussion um NoSQL-Datenbanken bekannt geworden. NoSQL steht fur
»,hot only SQL*. Bei NoSQL-Datenbanken werden Datenmodelle betrachtet, die
entweder nicht relational oder tber das relationale Modell hinausgehend sind. Neo4J
hat als Datenmodell das Modell eines persistenten Graphen.

Ein Graph G ist ein Verbund einer Menge P von Punkten (Ecken) und einer Menge K
von Kanten: G = (P, K). Hierbei verbindet jede Kante k zwei Ecken p1 und p2.

BSP.1: In einer Aufgabe des nachsten Praktikumsversuchs soll aus mehreren RDB
Tabellen Informationen zum Aufbau eines Graphen Gr mit Hilfe eines JDBC-
Programms JP1 zusammengestellt werden. JP1 greift hierzu lesend auf die RDB
Tabellen zu und erzeugt Informationen tber die Ecken p und die Kanten k des in der
Neo4J zu speichernden Graphen Gr. Diese Informationen werden von JP1
zeichenorientiert in eine zu erzeugende XML-Datei Gr.XML geschrieben (s. Abb.1:
DFP fir JP1). Das Neo4J-DBMS des Informatik-Labors verftigt tber einen Import-
Modul, der pruft, ob die Datei Gr.XML in Hinsicht auf den zu speichernden Graphen
valide ist. Ist die Datei valide, wird der in Gr. XML beschriebene Graph gespeichert,
sonst bekommt der Anwender eine Fehlermeldung.

~ £ .

NWDBrE |
(Neo#d)

Abb.1: DFP fur JP1

BSP.2: Eine XML-Dateli, die einen Graphen G = (P,K) enthalt, wird aus einer Tabelle
RORT, die Ortsinformationen enthalt (1 Ort = 1 Ecke), und einer Tabelle ROUTPLAN,
die Streckeninformationen enthalt (1 Strecke = 1 Kante), erzeugt.

a) Inhalt von RORT:
IIPLZII IIORTII
53111 Bonn

50678 Koeln

53842
52064
40212

Troisdorf
Aachen
Duesseldorf

b) Inhalt von ROUTPLAN:

"ROUT™
BNDUE1
BNDUE1
BNDUE1
BTDFAC1
BTDFAC1
BTDFAC1
BTDFAC1

AP WONRFRPWNPE

"STRECK" ""APLZ"

53111
50678
40212
53111
53842
50678
52064

"BPLZ"
50678
40212
53111
53842
50678
52064
53111

oM
30
40
70
10
20
60
90

Die mit einem JDBC-Programm erzeugte XML-Datei (hier ROUT60.XML) hat

folgenden Inhalt:

<?xml version="1.0" encoding="15S0-8859-1"7>
<graph xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">

<I--Datenbankname-->
<dbname>RoutenplanMHENKDB</dbname>

<I-—-Knoten mit Attributen-->

<attribute attName="ORT" attType="neo:string'>Bonn</attribute>

<attribute attName="PLZ" attType="neo:int'">53111</attribute>

</node>

<node nodeld=""1"">

<attribute attName="ORT" attType="neo:string'>Duesseldorf</attribute>
<attribute attName="PLZ" attType="neo:int'>40212</attribute>

</node>

<node nodeld="3"">

<attribute attName="ORT" attType="neo:string'>Aachen</attribute>
<attribute attName="PLZ" attType="neo:int">52064</attribute>

</node>

<node nodeld="5">

<attribute attName="ORT" attType="neo:string">Troisdorf</attribute>
<attribute attName="PLZ" attType="neo:int''>53842</attribute>

</node>

<node nodeld="2">

<attribute attName="ORT" attType="neo:string'>Koeln</attribute>
<attribute attName="PLZ" attType="neo:int">50678</attribute>

</node>

<edge edgeld=""1" type="'directed" source="4" target="2" weighting=""30"
label="BNDUE1l ">

<attribute attName="STRECK" attType="neo:int">1l</attribute>

</edge>

<edge edgeld=""2" type="'directed" source="2" target="1" weighting=""40"
label="BNDUE1 >

<attribute attName="STRECK" attType="'neo:int">2</attribute>

</edge>

<edge edgeld="'3" type="'directed" source="1" target="4" weighting=""70"
label="BNDUE1 ">

<attribute attName="STRECK" attType="neo:int">3</attribute>

</edge>

10
<edge edgeld="4" type="'directed" source="4" target="5" weighting=""10"
label="BTDFAC1 ">
<attribute attName="STRECK" attType="neo:int">1</attribute>
</edge>
<edge edgeld="5" type="'directed" source="5" target="'2" weighting="20"
label="BTDFAC1 ">
<attribute attName="STRECK" attType="neo:int'>2</attribute>
</edge>
<edge edgeld="6" type="'directed" source="2" target="3" weighting=""60"
label="BTDFAC1 ">
<attribute attName="STRECK" attType="'neo:int">3</attribute>
</edge>
label="BTDFAC1 ">
<attribute attName="STRECK" attType="neo:int'>4</attribute>
</edge>
</graph>

Aus dieser XML-Datei kann das IMPORT-Werkzeug der Graphdatenbank Neo4J einen
Graphen G = (P,K) erzeugen, der in dem VIEW-Werkzeug auch direkt anschaulich als
Graph dargestellt werden kann:

11

Routenplans)

: Graph G = (P,K) eines

(Abb.2

