
 1
4. Hierarchische und netzwerkartige Datenbankmodelle
4.1 Hierarchische Datenbanken
Hierarchien können durch Baumgraphen beschrieben werden. Datensätze einer
hierarchischen Datenbank (HDB) sind in Segmenten organisiert. Segmente enthalten
Datensätze gleichen Aufbaus.

 2
Logische Abhängigkeiten in Form von Hierarchien werden in einer HDB dadurch
verwaltet, dass Children-Segmente einem Parent-Segment untergeordnet werden. Die
Segmente stehen in einer baumartigen Anordnung.
BSP.1: Eine Versandauftragsdatenbank (VSA) mit den Segmenten VSA-Stamm
(Parent) und den Children-Segmenten VSA-Position (VSA-Pos) und Packmittel.

 3
Die Hierarchie wird durch Pointer-Ketten (Listen) implementiert, in denen jeweils ein
Parent-Datensatz auf eine Liste von Children-Datensätze zeigt.

 4
Eine Anfragesprache für hierarchische Datenbanken vom Typ IMS® ist die Sprache
DLI (Data Language Interface). Diese baut auf der hierarchischen Struktur auf:
 Einfügeoperation: ISRT : notwendige Parameter: (DS, E_Seg [, P_Seg, PRIK_Parent])
mit:

• DS = einzufügender Datensatz,
• E_Seg = Name des Segments, in das der DS eingefügt werden soll,
• P_Seg = Name des Parentsegmentes,
• PRIK_Parent = PRIK-Wert des übergeordneten Parent-Datensatzes

 Leseoperationen: a) Direktzugriff auf einen Datensatz in einem Segment (GetUnique)
Parameter: Segmentname, PRIK-Segment
b) Sequentielles Weiterlesen im Segment nach einem erfolgreichen GetUnique
(GetNext) Parameter: Segmentname
c) Lesen aller Datensätze in einem Children-Segment, die einem Parentdatensatz
untergeordnert sind (GetNext within Parent) Parameter: PRIK_Parent,
Ch_Segmentname

4.2. Netzwerkartige Datenbanken (vgl. Vossen, S.83-114)
Netzwerkartige Datenbanken sind standardisiert worden durch CODASYL (Conference
on Data Systems Language). Das NW-Datenbankmodell besteht aus folgenden
Elementen: (1) Segmente: Datensätze gleicher Art werden jeweils in einem Segment

 5
organisiert. (Bsp.: Segment = LINIE, Segment = BHF (Bahnhof), Segment = Hpkt
(Haltepunkt)
(2) Sets (Mathematisch: Mengen): 1 Datensatz eines Segmentes A wird mit n
Datensätzen eines Segmentes B verknüpft sein. (Bsp.: Set1: „Linie verbindet“: 1 Linie
verbindet n Bahnhöfe. Set2: „ist Haltepunkt von“: 1 Bahnhof ist Haltepunkt von n
Linien.

 6
Ein modernes DBMS, das netzwerkartige Graphen verwalten kann und somit ein
NWDBMS (netzwerkartiges DBMS) ist, ist Neo4J. Neo4J ist im Zusammenhang mit
der neueren Diskussion um NoSQL-Datenbanken bekannt geworden. NoSQL steht für
„not only SQL“. Bei NoSQL-Datenbanken werden Datenmodelle betrachtet, die
entweder nicht relational oder über das relationale Modell hinausgehend sind. Neo4J
hat als Datenmodell das Modell eines persistenten Graphen.
Ein Graph G ist ein Verbund einer Menge P von Punkten (Ecken) und einer Menge K
von Kanten: G = (P, K). Hierbei verbindet jede Kante k zwei Ecken p1 und p2.
BSP.1: In einer Aufgabe des nächsten Praktikumsversuchs soll aus mehreren RDB
Tabellen Informationen zum Aufbau eines Graphen Gr mit Hilfe eines JDBC-
Programms JP1 zusammengestellt werden. JP1 greift hierzu lesend auf die RDB
Tabellen zu und erzeugt Informationen über die Ecken p und die Kanten k des in der
Neo4J zu speichernden Graphen Gr. Diese Informationen werden von JP1
zeichenorientiert in eine zu erzeugende XML-Datei Gr.XML geschrieben (s. Abb.1:
DFP für JP1). Das Neo4J-DBMS des Informatik-Labors verfügt über einen Import-
Modul, der prüft, ob die Datei Gr.XML in Hinsicht auf den zu speichernden Graphen
valide ist. Ist die Datei valide, wird der in Gr.XML beschriebene Graph gespeichert,
sonst bekommt der Anwender eine Fehlermeldung.

 7

Abb.1: DFP für JP1
BSP.2: Eine XML-Datei, die einen Graphen G = (P,K) enthält, wird aus einer Tabelle
RORT, die Ortsinformationen enthält (1 Ort = 1 Ecke), und einer Tabelle ROUTPLAN,
die Streckeninformationen enthält (1 Strecke = 1 Kante), erzeugt.
a) Inhalt von RORT:
"PLZ" "ORT"
53111 Bonn
50678 Koeln

 8
53842 Troisdorf
52064 Aachen
40212 Duesseldorf

b) Inhalt von ROUTPLAN:
"ROUT" "STRECK" "APLZ" "BPLZ" "KM"
BNDUE1 1 53111 50678 30
BNDUE1 2 50678 40212 40
BNDUE1 3 40212 53111 70
BTDFAC1 1 53111 53842 10
BTDFAC1 2 53842 50678 20
BTDFAC1 3 50678 52064 60
BTDFAC1 4 52064 53111 90

Die mit einem JDBC-Programm erzeugte XML-Datei (hier ROUT60.XML) hat
folgenden Inhalt:
<?xml version="1.0" encoding="ISO-8859-1"?>
<graph xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<!--Datenbankname-->
<dbname>RoutenplanMHENKDB</dbname>
<!--Knoten mit Attributen-->
<node nodeId="4">
<attribute attName="ORT" attType="neo:string">Bonn</attribute>

 9
<attribute attName="PLZ" attType="neo:int">53111</attribute>
</node>
<node nodeId="1">
<attribute attName="ORT" attType="neo:string">Duesseldorf</attribute>
<attribute attName="PLZ" attType="neo:int">40212</attribute>
</node>
<node nodeId="3">
<attribute attName="ORT" attType="neo:string">Aachen</attribute>
<attribute attName="PLZ" attType="neo:int">52064</attribute>
</node>
<node nodeId="5">
<attribute attName="ORT" attType="neo:string">Troisdorf</attribute>
<attribute attName="PLZ" attType="neo:int">53842</attribute>
</node>
<node nodeId="2">
<attribute attName="ORT" attType="neo:string">Koeln</attribute>
<attribute attName="PLZ" attType="neo:int">50678</attribute>
</node>
<edge edgeId="1" type="directed" source="4" target="2" weighting="30"
label="BNDUE1 ">
<attribute attName="STRECK" attType="neo:int">1</attribute>
</edge>
<edge edgeId="2" type="directed" source="2" target="1" weighting="40"
label="BNDUE1 ">
<attribute attName="STRECK" attType="neo:int">2</attribute>
</edge>
<edge edgeId="3" type="directed" source="1" target="4" weighting="70"
label="BNDUE1 ">
<attribute attName="STRECK" attType="neo:int">3</attribute>
</edge>

 10
<edge edgeId="4" type="directed" source="4" target="5" weighting="10"
label="BTDFAC1 ">
<attribute attName="STRECK" attType="neo:int">1</attribute>
</edge>
<edge edgeId="5" type="directed" source="5" target="2" weighting="20"
label="BTDFAC1 ">
<attribute attName="STRECK" attType="neo:int">2</attribute>
</edge>
<edge edgeId="6" type="directed" source="2" target="3" weighting="60"
label="BTDFAC1 ">
<attribute attName="STRECK" attType="neo:int">3</attribute>
</edge>
<edge edgeId="7" type="directed" source="3" target="4" weighting="90"
label="BTDFAC1 ">
<attribute attName="STRECK" attType="neo:int">4</attribute>
</edge>
</graph>

Aus dieser XML-Datei kann das IMPORT-Werkzeug der Graphdatenbank Neo4J einen
Graphen G = (P,K) erzeugen, der in dem VIEW-Werkzeug auch direkt anschaulich als
Graph dargestellt werden kann:

 11

(Abb.2: Graph G = (P,K) eines Routenplans)

