3. Zugriffe auf RDB mit JDBC (Java Database Connectivity)

Der Zugriff auf relationale Datenbanken mittels Java ist durch den Sprachstandard
JDBC (=: Java Database Connectivity) geregelt. Der Standard unterscheidet zwischen
Spezifika einzelner DBMS-Produkte und der allgemeinen Verarbeitung von SQL-Be-
fehlen in Java. Die Spezifika kommen in der Hauptsache nur beim Verbindungsauf-
bau (Connection) zum Tragen. Die allgemeine Verarbeitung von SQL-Befehlen in
Java ist unabhéngig von DBMS-Produktspezifika und wird mittels des Java-Pakets
java.sql implementiert. Dieses Paket enthilt Schnittstellen, Klassen und Ausnahme-
falle.

<Abb.1: Allgemeine Ubersicht: JDBC-Zugriff>

Legende:

e JDBI1 : Java-Clientprogramm mit JDBC-Zugriff auf eine RDB.

e T1,...,Tn : Tabellen der RDB. Das RDBMS liuft auf einem Server-Rechner.
e connect A : Verbindungsanfrage.

e connection : Verbindungsantwort (eine Instanz der Klasse Connection).

e SQL A : Statement mit SQL-Anfrage.

e SQL E : Ergebnis der SQL-Anfrage (SQL-Antwort).

Das allgemeine Programmierkonzept ist daher: Der Verbindungsaufbau wird pro
DBMS in einer produktspezifischen connection()-Methode programmiert. Alle
weiteren DB-Zugriffe sind produktunabhingig und damit nur von der Logik des
Algorithmus und von SQL abhéngig und somit portierbar auf ein beliebiges RDBMS,
das sich an die SQL-Normen hélt.

3.1. JDBC-Verbindungsaufbau

RDBMS-Produktanbieter (Oracle, IBM, Microsoft, mySQL, ...) stellen JDBC-Treiber
zur Verfiigung. Vor dem Kompilieren ist der jeweilige JDBC-Treiber fiir die Java
Entwicklungsumgebung zu laden.

Der Verbindungsaufbau von einem Java Client-Programm arbeitet in zwei Schritten:
(1) ein produktspezifischer Treiber wird geladen, (2) mittels des Treibers wird unter
Angabe einer URL beim RDBMS Server-Rechner eine Verbindungsinstanz (eine In-
stanz der Klasse Connection) angefordert. Im Erfolgsfall wird eine Verbindungsinstanz
zuriickgegeben. Im Fehlerfall wird eine SQLException erzeugt.

Nachfolgend ist eine Oracle spezifische Methode connect() beispielhaft angegeben. Im
Falle eines anderen RDBMS miisste nur diese Methode durch eine andere connect()
Methode ausgetauscht werden. Alle anderen Klassen und Methoden eines JDBC-
Programms bleiben unverindert. Die im nachfolgenden Beispiel enthaltene Klasse
OracleDataSet ist im produktspezifischen Paket oracle.jdbc.pool enthalten, das
importiert werden muss.

BSP.1: Eine Oracle spezifische Methode connect():

Y faisialaiaiaiaioiaiaiaioiaiaiaiaioiaiaiaialeiaiaiaiaiaiaiaiaiaiaiaiaiaiaioiaiaiaiofaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiafaiaiaiafaialaiafaialaie /
/* Methode : connect() */
/* Zweck : Aufbau einer Oracle spezifischen DB-Verbindung */
/* Parameter : KEINE */
/* Ruckgabewert: Instanz der Klasse Connection */
/* Exception(s): SQLException */

/***/

public static Connection connect() throws SQLException
{String treiber;

OracleDataSource ods = new OracleDataSource();
treiber = "oracle.jdbc.driver.OracleDriver";
Connection dbConnection = null;

/* Treiber laden */

try

{Class.forName(treiber).newlnstance();
} catch (Exception e)
{System.out.printIn('Fehler beim laden des Treibers: "+ e.getMessage());
s
/* Datenbank-Verbindung erstellen */
try
{ods.setURL(*'jdbc:oracle:thin:MMMM/KKKK@//Boetius.nt.fh-koeln.de:TTTT:xe");
dbConnection = ods.getConnection();
} catch (SQLException e)
{ System.out.printIn(""Fehler beim Verbindungsaufbau zur Datenbank!');
System.out.printin(e.getMessage());
}

return dbConnection;

}

3.2 SQL- und Java-Datentypen
Die folgende Tabelle gibt es eine Ubersicht, welche SQL-Datentypen welchen Java-
Datentypen entsprechen.

SQL-Datentypen Java-Datentypen
integer int
float double
decimal(p,q) double (in Annédherung),
BigDecimal (Stellengenau)
char(n), varchar(n) String
date, time, timestamp Date (Weiterverarbeitung mit Calendar)

3.3 Erzeugung eines Anweisungsobjekts

Fiir jede SQL-Anweisung, die in einem JDBC-Programm ausgefiihrt werden soll, muf3
ein Anweisungsobjekt, d.h. eine Instanz der Klasse Statement erzeugt werden. Hierfiir
benoétigt man eine Instanz der Klasse Connection.

BSP.2: Erzeugung eines Anweisungsobjekts. Das dabei benutzte Objekt dbConnection

ist eine bereits existierende Instanz der Klasse Connection:
Statement stl;
stl = dbConnection.createStatement();

3.4 SELECT unter JDBC

Die Ausfiihrung eines SELECT Kommandos und die Verbeitung seines Ergebnisses
unter JDBC besteht in der Hauptsache aus vier Arbeitsschritten:

(1) Aufbau eines SELECT-Strings

(2) Ausfiihrung der SELECT-Anfrage

(3) Verarbeitung der Ergebnismenge

(4) Schlielen des Anweisungsobjekts

(1) Aufbau des SELECT-Strings

Jedes SQL-Kommando, das von einem JDBC-Programm an den SQL-Kommandointer-
preter iibergeben wird, ist eine Zeichenkette, d.h. ein Stringobjekt. In den String konnen
anwendungsspezifische Variablen aufgenommen werden.

BSP.3: Ein konstantes SELECT-Kommando, das einen JOIN auf die Tabellen AUTO
und KFZMIETV (Kfz-Mietvertrage) enthilt:

String SQ1="SELECT AUTOID, AUTONAME, MIETVID, PID FROM
AUTO A, KFZMIETV B WHERE A.AUTOID=B.AUID";

BSP.4: Ein SELECT auf eine Tabelle Kunde, wobei die Grenzen des PLZ-Bereiches

durch vorgegebene Variablenwerte vom Typ int bestimmt sind:
String SQ2="SELECT knr, knam, plz, kredit FROM Kunde WHERE
plz >="+ug+” AND plz <="+0g;

6
BSP.5: Ein SELECT auf eine Tabelle Kunde, wobei ein Vergleichsmuster durch eine

Stringvariable bestimmt sind:
String SQ3="SELECT knr, knam, plz, kredit FROM Kunde WHERE

knam LIKE ‘,’+Vgl+”%’11;

BSP.5: Ein SELECT mit Gruppenverarbeitung auf eine Tabelle Kunde, wobei in der

Spaltenauswahl ein Aliasname fiir einen arithmetischen Ausdruck gesetzt wird:
String SQ4="SELECT ort, count(knr)AS anzk FROM Kunde GROUP

BY ort”;

(2) Ausfithrung der SELECT-Anfrage

Mit einem vorhandenen Anweisungsobjekt stl der Klasse Statement (vgl. 3.3) und
einem String sqsel, der den SELECT-Befehl enthélt, wird mittels der Methode
executeQuery() der Klasse Statement die SELECT-Anfrage an das RDBMS gestellt.
Die SELECT-Antwort, die eine leere Ergebnisliste (SQLNotFoundException) oder eine
Ergebnisliste mit mindestens einer Zeile zuriickgibt, wird als Instanz einer Klasse
ResultSet verwaltet.

Prototyp: public ResultSet executeQuery(String sql) throws SQLException

BSP.6: Aufruf der Methode executeQuery():
ResultSet rsl;
rsl = stl.executeQuery(sgsel);

(3) Verarbeitung der Ergebnismenge

Im allgemeinen Fall besteht die Ergebnismenge aus einer oder mehreren Zeilen. Die
Ergebnismenge wird in der Regel mittels einer Schleife verarbeitet. Durch die Ergeb-
nismenge kann mit der Methode next() der Klasse ResultSet navigiert werden. Die
Methode next() stellt eine Kombination der liblichen Iterator-Methoden hasNext() und
next() fiir Mengen- bzw. Listenobjekte dar: next() priift, ob eine erste bzw. nichste Er-
gebniszeile vorliegt. Ist dieses der Fall, wird direkt auf diese Ergebniszeile zugegriffen.

Die Struktur einer Ergebniszeile ist durch die Spaltenauswahl des SELECT gegeben.
Auf jeden Eintrag der Spaltenauswahl kann durch Angabe des Spaltennamens spn oder
durch Angabe der Spaltenummer k zugegriffen werden (1 <k < n ; n = Anzahl der
Spalten in der Spaltenauswahl). Der Zugriff erfolgt mit einer datentypspezifischen
Methode getDta() der Klasse ResultSet, wenn dta ein fiir die Verarbeitung der
Ergebnisspalte geeigneter Java Datentyp ist (vgl. 3.2).

Allgemeine Prototypen der get-Methoden der Klasse ResultSet:
dta getDta(String spn)
dta getDta(int k)

Java-Datentypen getDta() Methoden
int getInt()
double getDouble()

BigDecimal getBigDecimal()
String getString()
Date getDate()

Ist die Ergebnismenge verarbeitet worden, kann der Zugriff darauf mit der Methode
close() geschlossen werden: rs1l.close();

(4) Schlieffen des Anweisungsobjekts
Um das Anweisungsobjekt, mit dem die SELECT-Anfrage gestellt wurde freizugeben,
wird es mit der Methode close() der Klasse Statement geschlossen.

BSP.7: Ausfiihrung der SELECT-Anfrage aus BSP.3 und Verarbeitung der
Ergebnismenge:
static void kfzAbfrage(){
int 1z=0;
try
{ System.out.printIn("'START:");
Connection con = connect();

Statement Stmt;
ResultSet RS;
String SQL;

String knam;
int kid, mvid, mpid;

// Erzeugen eines Statements aus der DB-Verbindung
Stmt = con.createStatement();

/**l

/* Eine SQL-SELECT Anfrage */
/**/
SQL = "SELECT AUTOID, AUTONAME, MIETVID, PID FROM AUTO A,

KFZMIETV B WHERE A._AUTOID=B.AUID";

RS = Stmt.executeQuery(SQL);
System.out.printin(Ergebnisliste:");

while(RS.next())

{knam = RS.getString(""AUTONAME™) ;
kid = RS.getInt("AUTOID™);
mvid = RS.getInt("MIETVID™);
mpid = RS.getInt("PID™);

System.out.printIn("KFZID: "+kid+" KFZNAME: '‘+knam+
" MIETVID: "+mvid+"™ MIETERNR: "+mpid);
1z++;
by
RS.close();
Stmt.close();

catch (SQLException e)

{ System.out.println(e.getMessage());
System.out.printIn("'SQL Exception wurde geworfen!');
¥

System.out.printIn("'DB-Abfrage: "+iz+" Zeilen gefunden.');
by

BSP.8: Ein SELECT unter JDBC, das die Ergebnisliste des SELECT als typisierte
Liste zuriickgibt. Die Ergebnisse des SELECT auf eine Tabelle ARTIKEL werden
durch Instanzen der folgenden Klasse Artikel verwaltet:
class Artikel
{int artnr;
String artbez;
double preis;
Artikel (int eartnr, String eartbez, double epreis)
{artnr=eartnr;
artbez=eartbez;
preis=epreis;
by
by
Die Methode hat folgenden Aufbau:
static LinkedList<Artikel> liesAllArt(Connection cl)

{LinkedList<Artikel> lIz=new LinkedList<Artikel>();
// JDBC Objekte zur Kommunikation mit der DB

10

11
Statement Stmt;

ResultSet RS;

String SQL;

Iint aartnr;

String aartbez;

double apreis;

Artikel ax;

try

{// Erzeugen eines Statements aus der DB-Verbindung
Stmt = cl.createStatement();

/***/

/* SELECT Anfrage auf alle Artikel */

/***/

SQL = "SELECT artnr,artbez,preis FROM Artikel ORDER BY
artnr'';

// SQL-Anweisung ausfiuhren und Ergebnis in ein ResultSet schreiben

RS = Stmt.executeQuery(SQL);

// Das ResultSet zeilenweise durchlaufen

while(RS.next())

{aartbez = RS.getString("artbez');
aartnr RS.getInt("artnr');
apreis RS.getDouble(*'preis™);

12
ax=new Artikel(aartnr,aartbez,apreis);

1z.add(ax);

+

RS.close();

Stmt.close();

// SQL Exception abfangen

} catch (SQLException e){
System.out.println(e.getMessage());
System.out.printIn("'SQL Exception wurde geworfen!');

}

return 1z;

}
3.5 Schreibende SQL-Zugriffe unter JDBC

Die Ausfiihrung eines INSERT, UPDATE und DELETE Kommandos hat ebenso wie
die Ausfiihrung eines SELECT ein STATEMENT-Objekt als Tréger. Der
Hauptunterschied besteht darin, dass statt der Methode executeQuery() fiir schreibende
Zugriffe die Methode executeUpdate() der Klasse Statement ausgefiihrt wird.
Prototyp: int executeUpdate(String SQLIUD)

13
Der String SQLIUD enthélt ein INSERT, UPDATE oder DELETE Kommando. Der

Riickgabewert ist die Anzahl korrekt eingefiigter, {iberschriebener oder geloschter
Zeilen.

Die nachfolgenden Beispiele fiir schreibende JDBC Zugriffe sind aus dem im
Folgenden dokumentierten Programmsystem iibernommen:

gvmowacoui JDBArtA Av kel
- — [avbnr
comms £ L) $<r)_ 4{1::6:1“1\:11i)t) _(u_>> r +la{ E‘
| LiesAllLAVEO Pres
| 1 |amsAvk O Befitil g by
Ries Lik e AVF0) Avilkeel (esv) |
AMda Lies Etw Ave O avk2csv()

csv A, Tusevr()
G_'JtUlPDPV AC)
avk DEL ()

|avt METADATAC)

5P\‘=-»1" 4
_s.(,('\ét

AHela (S,’J\\l
lawad2¢sv ()

i)
I
|

1

<Abb.2: Klassendiagramm>

14
BSP.9: Im Folgenden wird ein INSERT unter JDBC auf die Artikeltabelle
ausgefiihrt. Dabei wir die VALUES-Klausel aus den Attributwerten einer
Artikelinstanz gefiillt. Die Artikelinstanz wurde durch einen speziellen Konstruktor aus
einem CSV-Datensatz aufgebaut, der aus einer CSV-Datei zeichenorientiert eingelesen
wurde. Diese Verarbeitung wird innerhalb der Methode csv2Insert(), deren
Datenflussplan nachfolgend gegeben ist, ausgefiihrt.

CSVLZIH{-Z-‘WJ(‘(.J >

(4) Zesche 1 |—~c-'; m (v Luclauze
{ | a L3 Ap}ﬁ\ e L
(2)- TNSERT INTO AWTIKEL (--.) VALUES (...)
QLA | ¢ - ”"

<ADbb.3:DFP: csv2Insert()>

15
Fiir das INSERT unter JDBC sind die folgenden Arbeitsschritte wesentlich:

(1) Deklaration der benoétigten JDBC Objekte:
Int 1z=0; Statement Stmt; String SQL; Artikel ax;

(2) Aufbau der Instanz, die die VALUES-Klausel mit Werten versorgt. Hier ist die
Quelle ein CSV-String h, mit der der CSV-Konstruktor der Klasse Artikel arbeitet:
ax=new Artikel(h);

(3) Anlegen des Statement-Objekts:
Stmt = cl.createStatement();

(4) Aufbau des SQL-INSERT Strings:
SQL=""INSERT INTO Artikel(artnr,artbez,preis)
VALUES(II+aX-artnr+II , Ill+ax-artbeZ+III , ll+aX- preiS+")'l;

(5) Ausfithren des INSERT unter JDBC:
1z = Stmt.executeUpdate(SQL);

iz hat in dem Fall, dass dieses INSERT korrekt ausgefiihrt wurde, den Wert 1, sonst
enthélt iz den Wert 0.

Der Quelltext der Methode csv2Insert():
static i1nt csv2insert(Connection cl, String dsn) throws 10Exception
{int r=0, dz=0, i1z=0;
Statement Stmt;
ResultSet RS;

16
String SQL,h;
Artikel ax;

FileReader frl=new FileReader(dsn);
BufferedReader brl=new BufferedReader(frl);
h=brl.readLine();
while(h!=null)
{dz=dz+1;
ax=new Artikel(h);
if (ax.artnr==-1)
{System.out.printIn("'’Kein INSERT fuer: '+h);
h=brl.readLine();
continue;
+
try
{Stmt = cl.createStatement();

/***/

/* INSERT fuer ein Artikel */
/***/
SQL=""INSERT INTO Artikel(artnr,artbez,preis)
VALUES(""+ax.artnr+", ""+ax.artbez+"" ,"+ax.preis+")";

// INSERT ausfihren

iz = Stmt.executeUpdate(SQL);

r=r+iz;

Stmt.close();

} catch (SQLException e){
System.out.println(e.getMessage());
System.out._printIn(""SQL Exception wurde geworfen!');

by
h=brl.readLine();

}

return r;

}
BSP.10: Im Folgenden konnen zwei Arten eines UPDATE unter JDBC auf die

Artikeltabelle ausgefiihrt werden: (1) Setzen eines neuen absoluten Preises epr fiir
einen Artikel, der durch einen PRIK-Wert uanr identifiziert wird. (2) Prozentuale
Erhohung aller Preise. In dem Fall enthilt epr den Prozentsatz der Preiserhohung. Im
Fall (1) wird in Abhingigkeit von epr und uanr die SET- und WHERE-Klausel
aufgebaut. Im Fall (2) wird nur eine SET-Klausel aufgebaut:

SQL=""UPDATE Artikel SET preis="";

a=1.+epr/100.;

iIT (umod==1) SQLE=""+epr+" WHERE artnr="+uanr;

1T (umod==2) SQLE="""+a+""*preis';

SQL=SQL+SQLE;

Ir = Stmt.executeUpdate(SQL);

Beide beschriebene Arten des UPDATE unter JDBC werden mittels der Methode
artUPDpr1() ausgefiihrt:

17

18

static int artUPDprl(Connection cl, int umod, double epr, int

uanr)
{int 1r=0;

double a=1.;

Statement Stmt;

ResultSet RS;

String SQL, SQLE=""";

try

{Stmt = cl.createStatement();

/***/

/* UPDATE fuer einen bzw. mehrere Artikel */
/***/
SQL=""UPDATE Artikel SET preis=";
a=1.+epr/100.;
ifT (umod==1) SQLE="""+epr+" WHERE artnr=""tuanr;
it (umod==2) SQLE="""+at+"*preis";
SQL=SQL+SQLE;
ir = Stmt.executeUpdate(SQL);
Stmt.close();
} catch (SQLException e){
System.out.println(e.getMessage());
System.out.printIn(*'SQL Exception wurde geworfen!'™);

}

return ir;

19
¥

Im Fall (2) werden alle Zeilen der Artikeltabelle gedndert, daher ist der Riickgabewert
ir gleich der Zeilenanzahl dieser Tabelle.

BSP.11: Genau eine Zeile zu einer iibergebenen Artikelnummer uanr (Kandidat fiir

einen PRIK Wert) soll geloscht werden:
SQL="'DELETE FROM Artikel WHERE artnr="+uanr;
Ir = Stmt.executeUpdate(SQL);

Dieses DELETE unter JDBC wird mittels der Methode artDEL()ausgefiihrt:
static int artDEL(Connection cl, int uanr)
{int ir=0;

Statement Stmt;

ResultSet RS;

String SQL;

try

{Stmt = cl.createStatement();

/***/

/* DELETE eines Artikels */
/***/
SQL=""DELETE FROM Artikel WHERE artnr="+uanr;

// DELETE ausfiuhren

ir = Stmt.executeUpdate(SQL);

Stmt.close();

20
} catch (SQLException e){

System.out.println(e.getMessage());
System.out.printIn(*'SQL Exception wurde geworfen!'™);

}

return ir;

by

3.6 Die Abfrage von Metadaten

Unter JDBC besteht die Mdglichkeit wihrend der Laufzeit eines Programmes
Metadaten einer Tabelle, wie die Spaltenanzahl, die Attributnamen und ihre Datentypen
abzufragen. Diese Aktivitdten konnen mit der Klasse ResultSetMetaData ausgefiihrt
werden. Gegeben ist eine Instanz conl der Klasse Connection. Folgende Schritte sind
dann zur Metadatenabfrage auszufiihren:

(1) Ein SELECT auf alle Spalten der untersuchten Tabelle tabname ist auszufiihren:
String SQL = “SELECT * FROM tabname*;

Statement st1=conl.createStatement();

ResultSet rs1=stl.executeQuery(SQL);

(2) Eine Metadateninstanz zum ResultSet anlegen:
ResultSetMetaData rsmd1;
rsmdl=rsl.getMetaData();

21
(3) Spaltenanzahl abfragen:
int m=rsmd1l.getColumnCount();

(4) Die Liste der spaltenbezogenen Metadaten autbauen:
(4a) Einen Knotentyp fiir die Liste der Metadaten definieren:
class AMeta
{String spnam; /* Spaltenname */

String spdt; /* Datentyp der Spalte */

)

(4b) Abfrage des Spaltennamens und seines Datentyps mit folgenden
Abfragemethoden der Klasse ResultSetMetadata (Prototypen):
String getColumnName(int 1)

String getColumnTypeName(int 1)

Der Ubergabeparameter i ist der SQL-Spaltenindex (1 <i<m).

Die Abfrage der Metadaten beziiglich der Tabelle Artikel kann mit folgender Methode
artMETADATA() ausgefiihrt werden, die eine Liste von Metadaten fiir die Spalten

dieser Tabelle erzeugt, deren Knoten vom Typ AMeta (s. (4a)) sind, erzeugt:
static LinkedList<AMeta> artMETADATA(Connection cl)
{LinkedList<AMeta> lz=new LinkedList<AMeta>();

Statement Stmt;

ResultSet RS;

ResultSetMetaData rsmdl;
AMeta Xx;

String SQL;

int spanz,stanz,i;
String colnam;

String coldtyp;

int nako;

try

{Stmt = cl.createStatement();

SQL = "SELECT artnr,artbez,preis FROM Artikel ORDER BY artnr';
RS = Stmt.executeQuery(SQL);

// Metadatenabfrage
rsmd1l=RS.getMetaData();
spanz=rsmdl.getColumnCount();
for(i=1;i<=spanz;i++)

{colnam = rsmdl.getColumnName(1);
coldtyp= rsmdl.getColumnTypeName(i);
x=new AMeta(colnam,coldtyp);
Iz.add(x);

by

RS.close();

Stmt.close();

// SQL Exception abfangen

} catch (SQLException e){

22

23
System.out.println(e.getMessage());
System.out._printIn(""'SQL Exception wurde geworfen!');

by

return lz;

}

Fiir die Tabelle Artikel wird damit folgende Liste von Metadaten erzeugt, deren Knoten
in Form von CSV-Strings ausgegeben werden:

Relationenschema (JDBC-Abfrage) der Tabelle Artikel:
Spaltenname;Datentyp der Spalte

ARTNR ; NUMBER

ARTBEZ ; VARCHAR2

PREIS ; NUMBER

Ende der Metadaten-Abfrage: 3 Spalteneintraege gefunden.

3.7 Verarbeitung von SQL-Sonderdatentypen

3.7.1 Verarbeitung von decimal(p,q)-Attributen mit dem Java Datentyp
BigDecimal

Um Spaltenwerte vom SQL-Datentyp decimal(p,q) in einem JDBC Programm zu
lesen, als Festpunktzahlen sachgerecht zu verarbeiten und wieder in die Datenbank
einzufiigen, sind folgende Arbeitsschritte auszufiihren:

24

1) Einen decimal(p,q)-Attibutwert aus der DB mit der ResultSet-Methode
getBigDecimal() lesen. Die Klasse BigDecimal ist im Java-Paket java.math gegeben.
Dieses Paket muss importiert werden. Ein Beispielquelltext zum Lesen lautet:

BigDecimal bdl;
bdl=rsl.getBigDecimal (*‘preis*);
/* rsl - das hier gegebene ResultSet */

2) Konvertierungen: BigDecimal-Werte konnen aus Zeichenketten (exakt) und
double-Zahlen (in Anndherung) erzeugt werden und auch wieder in Stringwerte und
Gleitpunktzahlen konvertiert werden:

a) BigDecimal -> String: String s1=bd1.toString();

b) String -> BigDecimal: String s3=new String(“3.1415”);
BigDecimal bd3;
bd3=new BigDecimal(s3);

c¢) BigDecimal->double: double x1;
x1=bd1.doubleValue();

d) double->BigDecimal: double x3=2.718281;
BigDecimal bd5;

bd5=new BigDecimal(x3);

25

3) Festpunktarithmetik:

Addieren: bd3=bd1.add(bd2);

Subtrahieren: bd3=bd]1.subtract(bd2);

Multiplizieren: bd3=bd1.multiply(bd2);

Dividieren: bd3=bd1.divide(bd2, int RUNDUNGSMODUS); /* oder */
bd3=bd1.divide(bd2, int nako, int RUNDUNGSMODUYS);
/* nako : Anzahl der Nachkommastellen des Quotienten */

Der wichtigste Rundungsmodus ist das kaufméinnische Runden: Die Konstante heif3t
ROUND HALF UP und hat den Wert 4.

Mit der setScale()-Methode kann eine BigDecimal-Zahl auf q Nachkommastellen
gerundet werden: Prototyp: BigDecimal setScale(int q, int RUNDUNGSMODUS);

BSP.12: Kaufminnisches Runden von bd3 auf 2 Nachkommastellen:
bd3=bd3.setScale(2, ROUND HALF UP);

Mit der Methode scale() kann die Anzahl der Nachkommastellen erfragt werden:
int g=bd3.scale();

26
BSP.13: Eine einfache BigDecimal-Rechenmethode:
public static BigDecimal bigArith(BigDecimal a, BigDecimal
b, char op)
{BigDecimal c=new BigDecimal (0.0);
int na, nb, nc, w=1;

switch(op)
{case "+": c=a.add(b);
break;
case "-": c=a.subtract(b);
break;
case "*": c=a.multiply(b);
break;

case "/": nc=a.scale()+tb.scale();
c=a.divide(b,nc,4);
break;
+
nc=c.scale();
System.out.printIn(’'c = "+c+" NaKoAnzahl = "+nc);
System.out.printIn("'"Neue Skalierung? (NakKo >= 1 1)");
nc=101.einint();
c=c.setScale(nc,4);

27
System.out.printIn(’'c = "+c+" NaKo = ""+nc);
return c;

}

5) Ein decimal(p,q)-Attibut in der DB mit einem BigDecimal-Wert iiberschreiben:
Hierbei ist bd5 ein neu erzeugter BigDecimal-Wert und eartnr eine gegebene

Artikelnummer:
k=stol.executeUpdate(““UPDATE artikel SET preis=“+bd5+*
WHERE artnr=*“+eartnr);

6) Unter JDBC besteht die Moglichkeit wihrend der Laufzeit eines Programmes die
Metadaten eines decimal(p,q)-Attributs abzufragen. Die Zahl p ist die Gesamtstel-
lenanzahl der Festpunktzahl und heifit Precision. Die Zahl q ist die Anzahl der
Nachkommastellen und heifit Scale. Wenn nun, wie in Kap.3.6, mit rsmd1 eine
Metadateninstanz gegeben ist und i die Spaltennummer eines decimal(p,q)-Attributs Ai
ist, kann durch folgende Abfragen p und q bestimmt werden:

int p=rsmdl.getPrecision(i);

int g=rsmdl.getScale(i);

28
3.7.2 Verarbeitung von Attributen, die den SQL-Datentyp DATE, TIME oder
TIMESTAMP haben

1) Ein SQL-DATE-Wert aus einem ResultSet rs1 lesen. In diesem Beispiel hat die
Tabelle ARTIKEL, deren Zeilen ins ResultSet rs1 eingelesen wurden, ein Attribut
bearbdatum, das vom SQL-Typ DATE ist. Hierzu wird die ResultSet-Methode
getDate() verwendet, die einen Wert vom Java-Typ Date zuriickgibt, der im Paket

java.util definiert ist:
jJava.util.Date datl=rsl.getDate(““bearbdatum™);

2) Konvertierungen:
a) DATE->String: String sdatl=datl.toString();
b) String->DATE: Hierbei ist Voraussetzung, dass der String das Datum als korrekte
SQL-Datumskonstante in der Form JJJJ-MM-TT enthilt:
String edat=new String(“2006-11-26*);
jJava.util._Date datb5= java.util_.Date.valueOf(edat);

3) Rechnen mit Datumsbestandteilen:

Um mit den Datumsbestandteilen wie JJJJ, MM, TT usw. ganzzahlig rechnen zu

konnen, muss ein Date-Wert in eine Kalender-Instanz konvertiert werden:

a) Kalender-Instanz erzeugen: Calendar call;
call=Calendar.getinstance();

29
b) Kalender-Instanz mit Date-Wert fiillen. Hierbei ist datl ein Wert vom Typ Date
(s.0. 1)): call.setTime(datl);

c¢) Kalender-Instanz auswerten:
int j1, ml, tl1, msl;
jl=call.get(Calendar.YEAR);
ml=call.get(Calendar .MONTH);
tl=call.get(Calendar.DAY_OF_MONTH);
msl= call.get(Calendar.MILLISECOND);

d) Mit Datumsbestandteilen rechnen:
dl1) direkt: Z.B. nichstes Jahr: j1=j1+1;
d2) mit Kalender-Methoden: Z.B. 15 Tage nach dem 23.12.2006:

Calendar call5=call.add(Calendar. DAY_OF_MONTH,15);
Die Rechnung erfolgt mittels Monats- und gfs. Jahreswechsel. Im Beispiel miisste cal5
dann das Datum 7.1.2007 enthalten. AnschlieBend konnen, wie in c) die neu errechne-
ten Jahres-, Monats- und Tageswerte in int-Variablen wie j1, m1 und t1 gespeichert
werden.

e) Eine Kalender-Instanz in einen String konvertieren:
String ex=cal5.toString();

30
4) Ein UPDATE mit einem neu berechneten Datumswert ausfiihren. Hierbei wird
vorausgesetzt, dass wie in 3c) bzw. 3d) die int-Variablen j1, m1 und t1 die neu

errechneten Jahres-, Monats- und Tageswerte enthalten:
String SQU=*“UPDATE Artikel SET bearbdatum=

TO_Date(.”+t1+”- ”+m1+”- ”+j 1+11. , .DD-MM-YYYY.),,;

5) Ein DATE-Attibut in der DB mit einem SQL-DATE-Wert dul {iberschreiben, wobei
hier der UPDATE als ein prepared statement ausgefiihrt werden soll. Hierbei wird der
Wert dul wie in 2b) als korrekter SQL-Datumswert vorausgesetzt. Im Beispiel soll das
Attribut bearbdatum fiir den Artikel mit artnr=4712 ein neues Datum bekommen.

Das UPDATE-Kommando soll mit einer PreparedStatement-Instanz ausgefiihrt
werden. Mit ¢ ist hier die existierende DB-Verbindungsinstanz bezeichnet:

a) Ein Prepared Statement anlegen:
String prep=new String();
prep=“UPDATE ARTIKEL SET bearbdatum = ? WHERE artnr = ?*;
PreparedStatement ps=c. prepareStatement(prep);

b) Die Platzhalter mit Werten fiillen:
ps.setint(2,4712);
/* edx ist ein String mit einem korrekten SQL-Datumswert:

z.B.: edx="2006-11-26" */
java.sql.Date dul=java.sql.Date.valueOf(edx);
ps.setDate(1,dul);

c) Das Prepared Statement ausfiihren:
int ku=-3;
ku=ps.executeUpdate();

31

32

Lernziele zu Kap.3: Zugriffe auf RDB mit JDBC

1.

AR

Die Entkopplung von produktspezifischem Verbindungsaufbau und
produktunabhingiger Verarbeitung von SQL-Kommandos unter JDBC
verstanden haben.

. Das Vorgehen bei einem JDBC-Zugriff programmieren konnen:

Verbindungen aufbauen, Statement-Objekte anlegen, korrekte Strings mit
SQL-Befehlen (SELECT, INSERT, UPDATE, DELETE) schreiben und
zugehorige Statements ausfithren konnen (excuteQuery() bzw.
executeUpdate()).

Bei lesenden Zugriffen Ergebnismengen (ResultSets) verarbeiten konnen.
Die Durchfiihrung schreibender Zugriffen kontrollieren konnen.
Die Metadaten einer Tabelle abfragen konnen.

SQL-Sonderdatentypen wie decimal(p,q) und date verarbeiten konnen.

