2. Relationale Datenbanken (RDB) und SQL (Structured Query Language)
2.1 Das relationale Datenbankmodell

Die Segmente einer relationalen Datenbank (RDB) sind Tabellen. Tabellen sind wie
Matrizen in der linearen Algebra in Form von Spalten und Zeilen aufgebaut. Alle
Zeilen haben den gleichen Spaltenaufbau. Die Zeilen entsprechen den Datensitzen, die
Spalten definieren die Attribute der Datensétze.

. Meta-
SP" SPZ LR ‘SPO L Spm 1 d,‘:\'}'f‘\,]l
Z4 W44 Wiz ce w"\j T Wym
Z W, a Ly . Wa 2 —— W
2 2, 2 Jd v NJT?.
iz =
.- r - - - . Ad-‘fﬁ.l
Ze | Wi Wiz | - | Wey 7 Wimm
'Z.m L\'}M/i UV‘LQV i‘ Ll L‘JMJ‘ ,F o LU\MW

Abb.1: Aufbau einer Tabelle T einer RDB.

Fiir alle Spalten SPj (1 <j <m; m €N) einer Tabelle T werden im Schemakatalog des
relationalen Datenbanksystems (RDBMS) folgende Metadaten hinterlegt:

1) Jede Spalte SPj wird durch einen Attributnamen Aj identifiziert.

2) Jeder Spalte Aj ist ein Datentyp dtj zugeordnet: dtj = dt(Aj). Im nachfolgenden
Unterkapitel 2.2 wird eine Ubersicht iiber wichtige SQL Standard-Datentypen gegeben.

3) Fiir jede Spalte SPj ist ein Wertebereich Wj festgelegt. Wj ist zunédchst durch den
Wertebereich WDT gegeben, der durch den Datentyp dtj festgelegt ist. Falls fiir die
Spalte SPj eine Integrititsbedingung Ij gesetzt ist, kann dadurch der Wertebereich
eingeschriankt werden. Es gilt dann: Wj € WDT.

Def.1: Die unter 1), 2) und 3) genannten Metadaten bilden das Relationenschema
RS(T) der Tabelle T. Man schreibt: RS (T) = { (Aj,dtj, Wj)|1<j<m}. Inder
Formulierung des Relationenschemas kann man statt des Wertebereichs Wj auch die
Integritdtsbedingung Ij einsetzen: RS (T) = { (Aj,dtj,j) |1 <j<m }.

Jede relationale Datenbank RDB kann als Vereinigungsmenge von Tabellen Tk

angesehen werden (1 <j<L;L e N):

L
RDB = U Tk
k=1

Daher gilt flir das Relationenschema der gesamten Datenbank RS(RDB):
L
RS(RDB) = U RS(Tk)
k=1

Anm.1: Jede Zeile zi einer Tabelle T (1 <i<n; n e N) kann als m-Tupel dargestellt
werden (m = Anzahl der Spalten von T): zi = (wil , wi2 , ..., wij , ... , wim). Hierbei ist
jedes wij ist der Wert eines Attributs Aj bzw. einer Spalte SPj. Da wir fiir jedes Attri-
but Aj den Wertebereich Wj kennen, ist jede Zeile zi als m-Tupel Element des
kartesischen Produkts der Wertebereiche W1, W2Wm :

zi EW1 x W2 x ... x Wk

Die Tabelle T ist somit Teilmenge des kartesischen Produkts der Wertebereiche Wj.
Als Formel dargestellt: T € W1 x W2 x ... x Wk. Damit ist T auch eine mathemati-
sche Relation. Dieses hat zur Folge, dass in der Theorie relationaler Datenbanken
sowohl der Aufbau der relationalen Datenbank als auch die SQL-Befehle zum Lesen
und Schreiben auf Tabellen vollstindig mit Mitteln der relationalen Algebra

beschrieben werden konnen. Die SQL-Befehle werden dabei als relationale
Operatoren spezifiziert.

2.2 SQL-Datentypen

Die Datentypen von SQL sind normiert. Jiingere Normen sind z.B. SQL:1999 und
SQL:2003. Leider implementieren alle DBMS-Produkte diese Normen nicht 1:1.
ender Tabelle auch dokumentiert.

Wichtige Abweichungen bei Oracle™ sind nachfol

Gleitpunktzahl), d.h. fiir

Nr. | SQL-Datentyp | Zweck Beispielwerte | Oracle™
Spezifika
(1) char(n) Zeichenkette mit fester | ‘Haus®
Liange n (nEN)
(2) varchar(n) Zeichenkette mit ‘Karl der varchar2(n)
variabler Linge, mit GroBe*
maximal n Zeichen
(3) clob character large object
(4) integer ganze Zahlen z (z€Z) | -1035 bzw. number
mit —2°' <z7<2°'-1 2345
(5) float fiir Gleitpunktzahlen -3.78e-2 bzw.
(entspricht IEEE-8-Byte | 2561.61

rationale Zahlen gEQ
(6) decimal(p,q) fiir rationale Festpunkt- | 3170924.56 number(p,q)
zahlen mit insgesamt p | mit (p,q)=(9,2)
Dezimalstellen, davon q | bzw. 1.2798

Nachkommastellen mit (p,q)=(5,4)

(7) date fiir Datumsangaben ‘2013-10-16°

(8) time fiir Zeitangaben ‘11:30:49°

9) timestamp Kombination aus date
Datums- und
Zeitangabe

2.3 Der Sprachumfang von SQL

Die Structured Query Language (SQL) ist eine genormte Anfrage-, Definition- und
Transaktionskontrollsprache fiir relationale Datenbanken. SQL ist eine deklarative
Programmiersprache im Unterschied zu Java oder C, die imperative Programmierspra-
chen sind.

Bei einer imperativen Programmiersprache wird durch eine Sequenz von
Anweisungen genau beschrieben, wie ein bestimmtes Resultat maschinell ermittelt
werden soll.

Bei einer deklarativen Programmiersprache wird in der Hauptsache nur spezifiziert,
welches Resultat ermittelt werden soll. D.h. hier wird die Problembeschreibung
formuliert. Wie das entsprechende Resultat ermittelt werden soll, bestimmt bei einer
interpretierten deklarativen Programmiersprache wie SQL der zugehdrige
Kommandointerpreter. Ein Beispiel einer anderen deklarativen Programmiersprache ist
PROLOG, eine Sprache zur Programmierung pridikatenlogischer Formeln.

Der Sprachumfang von SQL besteht im Wesentlichen aus drei Teilmengen:
a) Data Definition Language (DDL): Die DDL enthilt Befehle, die auf dem
Schemakatalog des DBS agieren und somit der Verwaltung von Metadaten dienen.

Wichtige Befehle der DDL sind:

Befehl Zweck

CREATE TABLE Anlegen einer Tabelle. Hierbei werden alle
Metadaten einer Tabelle festgelegt.

ALTER TABLE Anderungen von Metadaten einer Tabelle.

DROP TABLE Loschen aller Metadaten und aller Nutzdaten einer
Tabelle.

b) Data Manipulation Language (DML): Zur DML gehoren die Befehle, die zur
Verwaltung der Nutzdaten einer Tabelle dienen. Hierzu gehdren schreibende Befehle
als auch der lesende Befehl SELECT:

| Befehl

\ Zweck ‘

INSERT Einfiigen einer neuen Zeile in eine Tabelle.

UPDATE Andern einzelner Spaltenwerte in einer oder
mehreren Zeilen einer Tabelle.

DELETE Loschen einer oder mehrerer Zeilen einer Tabelle

SELECT Lesen von einer oder mehreren Zeilen einer oder
mehrerer Tabellen, die logisch miteinander
verkniipft sind.

c¢) Data Control Language (DCL): Zur DCL gehdren die Befehle zur Verwaltung von
Transaktionen und zur Verwaltung von Zugriffsrechten.

Befehl Zweck

BEGIN Definition einer Transaktion.

COMMIT Anderung einer DB nach korrekter Durchfiihrung
der Transaktion.

ROLLBACK Zuriicksetzung der DB in den Zustand vor Beginn
der Transaktion.

GRANT Zuteilung von Zugriffsrechten an Nutzer.

REVOKE Widerrufen von Zugriffsrechten.

2.4 DDL Befehle

a) Eine Syntaxbeschreibung des Befehls CREATE TABLE zum Anlegen einer
Tabelle:

CREATE TABLE tabname

(spl dtl [spl_IntBed],

sp2 dt2 [sp2_IntBed],

SBN atNmispN_lntBed]
[, TabIntBed])

Erlauterung:

spl, ..., spN:Attribute (Spaltennamen);

dtl, ..., dtN: Datentyp der Spalten 1 bis N;

spi_IntBed: Integrititsbedingung der Spalte i (1 <i<N)

Tab_IntBed: Integrititsbedingung, die fiir die ganze Tabelle wirksam ist.

BSP.1: Anlegen einer Tabelle Kunde mit den Attributen knr (Kundennummer, PRIK),
knam (Kundenname), plz (Postleitzahl mit der sachlichen Integritdtsbedingung 1000 <
plz <99999) und ort (Lieferort des Kunden, MUSS-Attribut):

CREATE TABLE Kunde
(knr integer PRIMARY KEY,
knam char (30) NOT NULL,

plz integer CHECK(1000<=plz AND pl1z<=99999),
ort varchar(50) NOT NULL)

b) Eine Syntaxbeschreibung des Befehls ALTER TABLE zur Anderung einer

Tabelle:
ALTER TABLE tabname modus SP_IntBedl [, .., SP_IntBedK]

Erlauterung:

modus: Art der Anderung: ADD: hinzufiigen, MODIFY: iiberschreiben, DROP:
16schen (insbesondere: DROP COLUMN: 16schen einer Spalte).

SP_IntBedi: hinzugefiigte, liberschriebene oder geidnderte Spalte und / oder
Integritatsbedingung (1 <1 <K).

BSP.2: Hinzufiligen der Spalte strasse (Lieferanschrift mit Strale und Hausnummer)
mit Integritdtsbedingung NOT NULL (MUSS-Attribut) in die Tabelle Kunde:

ALTER TABLE Kunde ADD strasse varchar(30) NOT NULL

BSP.3: Das Attribut plz der Tabelle Kunde mit der zusétzlichen Integritdtsbedingung

NOT NULL ausstatten:
ALTER TABLE Kunde MODIFY plz integer NOT NULL

BSP.4: Loschen eines Attributs kredit in der Tabelle Kunde:
ALTER TABLE Kunde DROP COLUMN kredit

10

¢) Eine Syntaxbeschreibung des Befehls DROP TABLE zum Loschen einer

Tabelle:
DROP TABLE tabname

Hinweis: Der Befehl DROP TABLE loscht eine Tabelle vollstandig: Alle Nutz- und
Metadaten werden geldscht. Man sollte mit diesem Befehl besonders vorsichtig
umgehen.

BSP.5: Loschen der Tabelle Gartikel:
DROP TABLE Gartikel

2.5 Die schreibenden DML Befehle
a) Eine Syntaxbeschreibung des Befehls INSERT zum Einfiigen einer neuen Zeile
in eine Tabelle:
INSERT INTO tabname(spl, sp2, .., SpN)
VALUES(wl, w2, .., wN)

Erlduterung: Der INSERT Befehl hat zwei Klauseln: (1) Die Spaltenklausel (spl, sp2,
..., SpN), die angibt, welche Spaltenpositionen der Zeile mit Werten zu fiillen ist;

11
(2) Die Werteklausel (w1, w2, ..., wN), die die Werte enthilt, die gemil
Spaltenklausel einzufiillen sind.

Die Spaltenklausel ist optional. Die Werteklausel ist notwendig. Falls keine
Spaltenklausel angegeben ist, miissen mit der Werteklausel alle gemal ihrer
Integritdtsbedingung notwendigen Spaltenpositionen gefiillt werden. Dabei ist die
Reihenfolge der Spalten geméal der aktuellen Spaltenfolge im Tabellenschema
einzuhalten. Da Abweichungen zu Fehler fiihren, ist die Nutzung der Spaltenklausel zu
empfehlen, weil dann die Wertefolge in der Werteklausel nach der Folge in der
Spaltenklausel richten muss. Die Werte miissen der Syntax fiir Konstanten in SQL
folgen:

SQL- Allgemeine Konstante Anmerkung

Datentyp

integer NNN...N N: eine
Dezimalziffer

float, aaa...a.bb..b a, b:

decimal(p,q) Dezimalziffern

char(n), XXX ... XXX¢ X: ein ASCII-

varchar(m) Zeichen

date TO _Date("21.10.2013","DD-MM.YYYY™) | Oracle-
spazifisch

12
| date | Date'2013-10-23' | Allgemein |

BSP.6: Einfligen einer Zeile in die Tabelle Kunde:

INSERT INTO Kunde(knr,knam,plz,ort,strasse,kredit,aedat)
VALUES (107, "Meyer GmbH®,53999, "Bonn*®, "Feuerbach 777",
1000.00, TO Date("21.10.2013","DD.MM.YYYY™))

b) Eine Syntaxbeschreibung des Befehls UPDATE zur Anderung einer oder
mehreren Zeilen einer Tabelle:

UPDATE tabname SET spl=WAl, sp2=WA2, .., spN=WAn
WHERE LOG_BED

Erlduterung: Der UPDATE Befehl hat zwei Klauseln: (1) Die SET-Klausel, die
beschreibt, welche Spaltenposition spK (1 <K <n, spK ist der Spaltenname) mit dem
Inhalt eines Wertausdrucks WAK zu tliberschreiben ist. WAK ist im einfachsten Falle
eine Konstante. WAK kann aber auch gemil3 des Datentyps der Spalte aus einem
Spaltennamen, zuldssigen Operatoren und ggfls. eines SQL-Ausdrucks
zusammengesetzt sein. (2) Die WHERE-Klausel, die mit einer logischen Bedingung die
Zeilenmenge einschrinkt, auf die die Anderungsoperation ausgefiihrt wird.

BSP.7: Andern der gesamten Anschrift eines Kunden (knr=107):
UPDATE Kunde SET pl1z=50789, ort="Koeln®, strasse="Amselweg
17" WHERE KNR=107

13
BSP.7: Erhohen der Preise aller Artikel um 5 Prozent:
UPDATE Artikel SET preis=1.05*preis

¢) Eine Syntaxbeschreibung des Befehls DELETE zum Loschen einer oder
mehrerer Zeilen einer Tabelle:

DELETE FROM tabname WHERE LOG_BED

Erlduterung: Mit der WHERE-Klausel des DELETE Befehls wird die Menge der
Zeilen bestimmt, die zu 16schen sind. Hinweis: Ist keine WHERE-Klausel angegeben,
werden alle Zeilen der Tabelle geloscht! Also ist Vorsicht geboten.

BSP.8: Loschen des Kunden mit knr=108:
DELETE FROM Kunde WHERE KNR=108

14
2.6 Das SELECT

Das SELECT ist der Befehl zum lesenden Zugriff auf Tabellen einer relationalen
Datenbank. Das SELECT ist ein méchtiger Befehl mit einer Reihe von Klauseln.

Beschreibung des allgemeinen Aufbaus eines SELECT Befehls:

SELECT [selectArt] spaltenauswahl FROM tabListe
WHERE LOG_BED
[GROUP BY spaltenliste]
[HAVING LOG_BED]
[ORDER BY spaltenfolge]

Jede ausgefiihrte SELECT-Anfrage produziert eine Ergebnisliste. Die Ergebnisliste hat
den Aufbau einer tempordren Tabelle. Der Knotenautbau der Ergebnisliste ist durch die
spaltenauswahl bestimmt. Die Knoten sind die Zeilen der Ergebnistabelle. Man
kann sagen, jede SELECT-Anfrage transformiert eine zu lesende Tabelle in eine
Ergebnistabelle.

Anm.1: Eine minimale Form der SELECT-Anfrage besteht aus einer einfachen Liste

von ausgewihlten Spalten sp1, sp2, ..., spN einer Tabelle T:
SELECT [selectArt] spaltenauswahl FROM T

BSP.9: Auf die Tabelle KUNDE, wie sie in BSP.6 und BSP.7 mit Daten gefiillt wurde,
wird folgende SELECT-Anfrage gestellt:

15
SELECT KNR, KNAM, ORT, AEDAT FROM Kunde

Die Ergebnistabelle (Ergebnisliste) hat dann beispielsweise folgenden Autbau:

107 Meyer GmbH Koeln 21.10.13

109 Schulz KG Bonn 23.10.13

110 Schmitz, Josef Koeln 28.10.13

115 Schmitz, Josef Leverkusen 28.10.13

In folgender Abbildung ist die Ergebnistabelle zum SELECT aus BSP.9 als Liste
dargestellt:

< ABB.X: ERGEBNISLISTE>

BSP.10: Wiirde man sich nur auf die Spalten KNAM und AEDAT beschranken wollen,
wiirde folgende SELECT-Anfrage gestellt:
SELECT KNAM, AEDAT FROM Kunde

Die Ergebnistabelle (Ergebnisliste) hat dann folgenden Aufbau:

Meyer GmbH 21.10.13
Schulz KG 23.10.13
Schmitz, Josef 28.10.13
Schmitz, Josef 28.10.13

Im folgenden gehen wir nun die verschiedenen Klauseln des SELECT-Befehls durch:

16
A) Die Klausel selectArt steuert, ob doppelte Zeilen unterdriickt werden.
Folgende Eintrdge sind moglich: selectArt :-= ALL|DISTINCTJUNIQUE
Hierbei gilt: ALL : Alle Zeilen werden ausgegeben. Dieses ist der Default.
DISTINCT: Doppelte Zeilen werden unterdriickt. UNIQUE: Synonym zu DISTINCT.

BSP.11: Im Unterschied zum BSP.10 wird mit dem folgenden Aufruf

SELECT UNIQUE KNAM, AEDAT FROM Kunde

folgendes Ergebnis erzielt, an man erkennen kann, dass die doppelte Ergebniszeile zum
Eintrag KNAM=‘Schmitz, Josef* unterdriickt wurde:

Schulz KG 23.10.13
Meyer GmbH 21.10.13
Schmitz, Josef 28.10.13

B) Die spal tenauswah I-Klausel bestimmt, wie der Spaltenaufbau der
Ergebnistabelle inhaltlich strukturiert sein soll. Die Klausel kann aus komplexen
Ausdriicken aufgebaut sein. In der Beschreibung gehen wir hier den Weg von
einfachen zu komplexen Ausdriicken.

B1) spaltenauswahl :-= * : Alle Spalten der zulesenden Tabelle T sind fiir die
Ergebnistabelle ausgewaihlt.

BSP.12: SELECT * FROM Kunde
Im Ergebnis treten alle Spalten der Tabelle Kunde auf:

17

107 Meyer GmbH 50789 Koeln Amselweg 17 1000 21.10.13 ET
109 Schulz KG 53999 Bonn Windmihle 99 3000 23.10.13 HA
110 Schmitz, Josef 50111 Koeln Hohes Tor 7 1500 28.10.13 HA

115 Schmitz, Josef 51373 Leverkusen Pulvermihle 4000 28.10.13 CH

B2) spaltenauswahl :-= spl, sp2, .., SpN :Nurdie angegebenen Spalten
sp1, sp2, ..., spN der zulesenden Tabelle T sind fiir die Ergebnistabelle ausgewéhlt.
Diese Form der Spaltenauswahl wurde bereits oben in der Anm.1, BSP.9 und BSP.10
diskutiert.

B3) spaltenauswahl := spAus[{, spAus}]: Hier besteht die
Spaltenauswahl aus SQL-Ausdriicken SpAus , die aus

Spaltennamen,

Konstanten,

Operatoren,

Funktionen,

SQL-Anfragen

zusammengesetzt sein konnen. Weiterhin kann jeder Ausdruck tiber die Klausel AS
xAlias mit einem Aliasnamen xAlias verbunden sein.

B3.1) Operatoren und Funktionen fiir numerische Datentypen:
a) Numerische Operatoren: NOP :=+ |- | * |/

18
b) Numerischer Elementarausdruck: spwl NOP spw2 (spwl, spw2 sind
Spaltennamen oder Konstanten.

BSP.13: Berechnung des Kreditlimits der Kunden in US-Dollar (1 EUR = 1.3086 USD,
Stand 30.6.2013):

SELECT KNAM, KREDIT*1.3086 AS USKRED, “Stand:30.6.13” FROM
Kunde

Diese Anfrage erzielt folgendes Ergebnis als CSV-Ergebnisliste. Die Spaltennamen der

Ergebnistabelle sind hier mitaufgefiihrt:
"KNAM™ ; ""USKRED" ;"**STAND:30.6.13""

"Meyer GmbH ;1308,6;""Stand: 30.6.13"
"Schulz KG ':3925,8;"Stand: 30.6.13"
"Schmitz, Josef '";1962,9;"Stand: 30.6.13"
"Schmitz, Josef '";5234,4;"Stand: 30.6.13"

BSP:14: Umrechnung des Kreditlimits in US-Dollar, wobei der Umrechnungsfaktor
nicht als Konstante sondern durch eine eingebaute SELECT-Anfrage als

Spaltenausdruck ermittelt wird.
SELECT knr, knam, kredit, “EUR®, kredit * (SELECT

waehfaktor From Land where waehkenn="USD") AS USkred,

"USD" FRoM Kunde

Diese Anfrage erzielt folgendes Ergebnis als CSV-Ergebnisliste. Die Spaltennamen der
Ergebnistabelle sind hier mitaufgefiihrt:

19
"KNR™ ; "KNAM™ ; ""KREDIT" ;" "EUR """ ; ""USKRED"" ;" *USD """

117;"Steigenberger Hustensaft ";5000;"EUR™;6892;"USD™"

107 ;""Meyer GmbH "*;1000;"EUR";1378,4;"USD"
109;"'Schulz KG "*;3000;"EUR";4135,2;"USD""
110;"Schmitz, Josef ";1500;"EUR";2067,6;"USD"
115;"Schmitz, Josef "*;4000;"EUR";5513,6;"USD"

Anm.2: Damit eine solche implizite SELECT-Anfrage funktioniert, miissen drei
Bedingungen passen: a) Es darf als Operand nur eine Spalte in der Spaltenauswahl des
eingebauten SELECT ausgewdhlt sein. b) Der Datentyp der ausgewahlten Spalte muss
zum Operator, der dem eingebauten SELECT {ibergeordnet ist, passen. ¢) Die
Ergebnismenge des eingebauten SELECT darf nur aus einer Ergebniszeile bestehen.

¢) Numerische Skalarfunktionen:
e Potenzfunktion: POW(a,b)
e Modulofunktion: MOD(n,m) (= n(mod m))
e Runden von x auf n Nachkommastellen: ROUND(x,n)
e Weitere Funktionen: EXP(x), LN(X), FLOOR(X), ...

BSP:15: Runden der Preise der Tabelle Artikel auf eine Nachkommastelle:
SELECT artnr, artbez, round(preis,l) from Artikel
Diese Anfrage erzielt folgendes Ergebnis als CSV-Ergebnisliste:

"ARTNR" ;""ARTBEZ"" ; ""ROUND(PREIS,1)""
1;"Seife";1,1

20
2;"Brot'";2,4
3;"Hustensaft' ;4,5
4;'""":1,2
5;"Kuchen' ;3,5

B3.2) Operatoren und Funktionen fiir Zeichenketten:
e Substring-Funktion: substr(x,v,b) (= Substring der Zeichenkette in Spalte x von
Position v bis Position b)
e Verkettung von Spaltenwerten: spal||spa2

BSP:16: Anfrage auf Zeichenkettenspalten mit Verkettung und Substringbildung:
SELECT knr, substr(knam,1,5) as k1, ort]]","||strasse as k2
from kunde

Diese Anfrage erzielt folgendes Ergebnis als CSV-Ergebnisliste:

"KNR™ ;K1 K2

117;"Steig";"Ruthi,Tell Str.1"

107;""Meyer' ;"Koeln,Amselweg 17"

109;"Schul'";""Bonn,Windmuhle 99"

110;""Schmi**;""Koeln,Hohes Tor 7"

115;"Schmi" ;""Leverkusen,Pulvermihle 1"

B3.3) Datumsfunktionen:
e CURRENT : liefert das aktuelle Datum
e TO DATE(‘datumsangabe‘, ‘Formatstring®)

21

B3.4) Aggregatfunktionen:
e COUNT(*) : Anzahl der Ergebniszeilen
e SUM(spn) : Summe aller Werte der Spalte spn (gilt nur fiir Spalten mit
numerischem Datentyp)
e MAX(spn) : Maximum aller Werte der Spalte spn
e MIN(spn) : Minimum aller Werte der Spalte spn.

BSP:17: Anfrage auf die Artikeltabelle mit Aggregatfunktionen:
SELECT count(artnr), sum(preis), sum(preis)/count(artnr)
from artikel

Diese Anfrage erzielt folgendes Ergebnis als CSV-Ergebnisliste:
""COUNT(ARTNR)"';"*SUM(PREIS)"";""SUM(PRE1S)/COUNT (ARTNR)"*
5;12,68;2,536

C) Die WHERE-Klausel

Die WHERE-Klausel schriankt mit einer logischen Bedingung LOG_BED die Menge
der Ergebniszeilen einer SELECT-Anfrage ein. Eine logische Bedingung ist aus
logischen Operatoren und Vergleichsausdriicken aufgebaut. Vergleichsausdriicke
haben die allgemeine Form: SPX VOP VWERT. Hierbei ist SPX ein Spaltenname,
VOP ein Vergleichsoperator und VWERT ein Vergleichswert. Vergleichswerte
konnen Konstanten oder SQL-Ausdriicke sein (vgl. B3)).

22
C.1) Die logischen Operatoren sind: AND, OR, NOT .
C.2) Numerische Vergleichsoperatoren: =, |=, >=, <=, > <.
C.3) Vergleichsoperatoren fiir Zeichenketten: =, !=, LIKE
C.4) Vergleichsoperatoren fiir NULL-Werte: IS NULL, IS NOT NULL
C.5) Mengenwertiger Vergleichsoperator: IN (mathematisch: x Element einer Menge
M).

Anm.3: Der LIKE-Operator vergleicht den Inhalt einer Spalte spx arbeitet mit einer
Zeichenkette vgl, die als Vergleichsmuster dient: spx LIKE vgl

Innerhalb des Vergleichsmusters konnen folgende Ersatzzeichen (Jokerzeichen, bzw.
Wildcards) verwendet werden: % : fiir einen beliebigen String, ?: fiir ein beliebiges
Zeichen.

Anm.4: Der IN-Operator priift, ob der Inhalt einer Spalte spx in einer Vergleichsmenge
M vorkommt: spx IN M

Die Menge M kann dabei (a) als Menge von Konstanten oder (b) als Ergebnismenge
eines eingebetteten SELECT angegeben werden:

zu (a): select * from kunde where branche IN ("HA®, *CH")

zu (b): s. BSP.20.

BSP:18: Gesucht werden die Kunden des PLZ-Bereichs 5, deren Name mit ,,Sch*
beginnt:

23
SELECT * from kunde where 50000<=plz and plz<60000 and
knam LIKE "Sch%*

Diese Anfrage erzielt folgendes Ergebnis als CSV-Ergebnisliste:

"KNR™ ; ""KNAM™"" ; ""PLZ"" ; ""ORT"";""STRASSE"" ; "KREDI T ; ""AEDAT""; "'BRANCHE""
109;"'Schulz KG ":53999;"Bonn";"Windmihle 99" ;3000;23.10.13;"HA"
110;"Schmitz, Josef ";50111;"Koeln';"Hohes Tor 7' ;1500;28.10.13;"HA™
115;"Schmitz, Josef '";51373;"Leverkusen';"Pulvermuhle
1";4000;28.10.13;"CH"

BSP:19: Anfrage auf NULL-Werte in der Artikeltabelle:
SELECT * from artikel where artbez is null

Diese Anfrage erzielt folgendes Ergebnis als CSV-Ergebnisliste:

"ARTNR" ;""ARTBEZ" ; ""PREI1S"

4;"";1,23

BSP.20: Lesen aller Kunden, die aus einem EU-Land kommen. Hierbei wird die
Vergleichsmenge fiir die Elementbeziehung durch ein SELECT auf die Tabelle Land
erzeugt, wobei nur die Lander ausgewahlt werden, die zur Lédndergruppe ‘EU* gehdren:

SELECT * FROM Kunde WHERE kland IN (SELECT LKURZ FROM Land
WHERE LGR = “EU”)

D) Die GROUP BY-Klausel

24
Eine Gruppe in SQL ist eine Teilmenge U von Zeilen einer Tabelle T, die beziiglich
einer Spalte spx, dem sog. Gruppenbegriff, alle den gleichen Wert haben. Hat T n
Zeilen und hat spx k verschiedene Werte mitk <n, so gilt: U1 UU2U ... UUk =T.
Im nachfolgenden Beispiel hat die Kundentabelle n=5 Zeilen und k=3 verschiedene
Werte in der Spalte branche. Dadurch entstehen drei Gruppen, die mit Aggregatfunktio-
nen ausgewertet werden konnen.

BSP:21: Anfrage der Kundentabelle, die nach der Spalte branche gruppiert wird:
SELECT branche, count(knr), sum(kredit) from kunde Group

by branche

Diese Anfrage erzielt folgendes Ergebnis als CSV-Ergebnisliste:

""BRANCHE"" ; ""COUNT (KNR)""; ""SUM(KREDIT)""

""CH';2;9000

""HA';2;4500

"ET';1;1000

E) Die HAVING-Klausel

Mit der WHERE-Klausel konnte die Anfrage auf der Ebene von Zeilen einer Tabelle
eingeschrankt werden. Mit der HAVING-Klausel konnen logische Bedingungen fiir
Gruppen aufgestellt werden. In der Ergebnisliste sind dann nur die Gruppen vertreten,
die die logische Bedingung log_Bed erfiillen. Allg. Syntax: HAVING log_Bed

BSP:22: Anfrage auf die Gruppen der Kundentabelle, die mindestens 2 Elemente
haben:

25
SELECT branche, count(knr), sum(kredit) from kunde Group

by branche HAVING COUNT(knr)>=2

Diese Anfrage erzielt folgendes Ergebnis als CSV-Ergebnisliste:

""BRANCHE" ; ""COUNT (KNR)""; ""SUM(KREDIT)""

""CH';2;9000

""HA';2;4500

F) Die ORDER BY-Klausel

Die ORDER BY Klausel dient der Sortierung der Ergebnisliste nach Spalten. Es kann
jeweils aufsteigend (ASC (engl.: ascending)) bzw. absteigend (DESC (engl.: descen-
ding)) sortiert werden. ASC ist der Default. Die Reihenfolge in der Spaltenliste be-
stimmt die Sortierproiritit. Allg. Syntax: ORDER BY Spaltenliste

BSP:23: Die Ergebnisliste wird aufsteigend nach Kundenname sortiert. Gibt es
mehrere Kunden gleichen Namens wird absteigend nach PLZ sortiert:

SELECT knr, knam, plz, kredit from kunde order by knam,
plz DESC

Diese Anfrage erzielt folgendes Ergebnis als CSV-Ergebnisliste:
"KNR™ ; ""KNAM* ; ""PLZ"" ; "KREDIT""

107 ;""Meyer GmbH '*;50789;1000
115;"Schmitz, Josef '";51373;4000
110;"Schmitz, Josef "";50111;1500
109;"'Schulz KG '';53999;3000

117;"Steigenberger Hustensaft "*;4411;5000

26
H) Die Mehrtabellen-Verarbeitung (JOIN)

Bei einem JOIN wird mit SELECT auf mehrere Tabellen zugegriffen. Insbesondere
hat man damit die Mdglichkeit, Datensétze gemal der logischen Verkniipfung
zwischen Tabellen, die durch Fremdschliisselbeziehungen gegeben sind, aufzubereiten.
Das JOIN erzeugt aus den Tabellen, die in der Tabellenliste gegeben sind, ein
kartesisches Produkt. Beim natiirlichen JOIN wird dieses kartesische Produkt durch
eine WHERE-Klausel, in der die FKEY-Bedingungen gesetzt sind, eingeschriankt.

BSP:24: Gegeben sind die Tabellen KUNDE und ARTIKEL. Wenn man das
Kaufverhalten eines Kunden in der Form ,,1 Kunde kauft n Artikel mit einer jeweiligen
Menge mn* benétigt man eine Referenztabelle KUKAUFTA, die fiir jeden
Kaufvorgang eines Artikels eine Zeile anlegt und pro Zeile iiber eine FKEY-Beziehung
auf knr und eine FKEY-Beziehung auf artnr die logische Verkniipfung zur Kunden-
und zur Artikeltabelle verwaltet. Das Relationenschema dieser Tabelle wird
nachfolgend in Form eines CREATE TABLE Befehls gegeben:

CREATE TABLE KUKAUFTA
(KKANR 1nteger NOT NULL,
KNR i1nteger NOT NULL,
ARTNR 1nteger NOT NULL,
MENGE i1nteger NOT NULL,
CONSTRAINT KUKAUFTA_PK PRIMARY KEY(KKANR)

27
CONSTRAINT KUKAUFTA_FK1 FOREIGN KEY (""ARTNR'™)

REFERENCES ARTIKEL(ARTNR),
CONSTRAINT KUKAUFTA_FK2 FOREIGN KEY ("'KNR'™)
REFERENCES KUNDE(KNR)

)

Das JOIN, mit dem nun die Verkniipfung der drei Tabellen KUNDE, ARTIKEL und
KUKAUFTA hergestellt wird, erzeugt das kartesische Produkt:
KUNDE x ARTIKEL X KUKAUFTA

Hier wird ein natiirlicher JOIN aufgebaut, in dessen WHERE-Klausel die FKEY -

Bedingungen auf artnr und knr enthalten sind:

SELECT K.knr, substr(knam,1,12), A.artnr, artbez, menge,
preis*menge as wert

FROM kunde K, Artikel A, KUKAUFTA B

WHERE k.knr=b.knr AND a.artnr=b.artnr

Diese Anfrage erzielt folgendes Ergebnis als CSV-Ergebnisliste:

"KNR™ ;""SUBSTR(KNAM,1,12)";""ARTNR" ; ""ARTBEZ"" ; "MENGE""; ""WERT""
109;""'Schulz KG ";1;"Seife";20;22

109;""'Schulz KG ";5;"Kuchen™;30;105

109;"'Schulz KG ";3;"Hustensaft'";1;4,5

107;"Meyer GmbH ';2;"Brot';11;25,85

28
110;"Schmitz, Jos™;1;"Seife™;5;5,5
110;"Schmitz, Jos";2;"Brot";5;11,75
110 ; "SChmitZ ’ JOS" ; 5 ; "Kuchen" ; 5 ; 17 s 5

Anm.5: Ein JOIN ist in der Regel sehr RAM beanspruchend, da im Hintergrund immer
ein kartesisches Produkt aufgebaut wird. Im obigen Beispiel hat die Ergebnismenge des
natilirlichen JOIN 7 Ergebniszeilen. Das Mengengeriist war dabei: 5 Kunden, 5 Artikel
und 7 KUKAUFTA-Zeilen. Im Hintergrund hatte das kartesische Produkt daher 175
Zeilen. Fiir DBS mit gro3en Tabellen sollten nach Moglichkeit JOINs nur einge-
schriankt benutzt werden.

Anm.6: Neben der klassischen Syntax, die wie in BSP.24 die Beziehung des
kartesischen Produkts modelliert, gibt es in SQL auch die JOIN- ON-Syntax, in der die
Verkniipfung mit der Referenztabelle in einer ON-Klausel hergestellt wird. Die
nachfolgende INNER-JOIN-ON-SELECT-Anfrage erzielt das gleiche Ergebnis, wie
die SELECT-Anfrage aus BSP.24:

Select kunde.knr, substr(knam,1,12), A.artnr, artbez,
menge, preis*menge as wert

from kunde , Artikel A

Inner JOIN KUKAUFTA B ON a.artnr=B.artnr

where kunde.knr=B.knr

29

Lernziele zu Kap.2: Relationale Datenbanken und SQL

1.

A

Den allgemeinen Aufbau einer Tabelle und die mathematischen Begriffe des
kartesischen Produkts und der Relation erkliren konnen.

Die Metadaten einer Tabelle als Relationenschema beschreiben konnen.
Wichtige SQL-Datentypen kennen.
Den Sprachumfang von SQL erlidutern konnen.

Die Aufgaben und den Aufbau der DDL-Befehle CREATE TABLE, ALTER
TABLE und DROP TABLE bennenen konnen.

6. Die Syntax der DML-Befehle INSERT, UPDATE und DELETE kennen.

7. Das SELECT-Kommando mit seinen Klauseln kennen.

8. Erortern konnen, welche Formen einer Mehrtabellenverarbeitung es in

einem SELECT geben kann.

