
 1
2. Relationale Datenbanken (RDB) und SQL (Structured Query Language)
2.1 Das relationale Datenbankmodell
Die Segmente einer relationalen Datenbank (RDB) sind Tabellen. Tabellen sind wie
Matrizen in der linearen Algebra in Form von Spalten und Zeilen aufgebaut. Alle
Zeilen haben den gleichen Spaltenaufbau. Die Zeilen entsprechen den Datensätzen, die
Spalten definieren die Attribute der Datensätze.

Abb.1: Aufbau einer Tabelle T einer RDB.

 2

Für alle Spalten SPj (1 ≤ j ≤ m; m ∈N) einer Tabelle T werden im Schemakatalog des
relationalen Datenbanksystems (RDBMS) folgende Metadaten hinterlegt:
1) Jede Spalte SPj wird durch einen Attributnamen Aj identifiziert.
2) Jeder Spalte Aj ist ein Datentyp dtj zugeordnet: dtj = dt(Aj). Im nachfolgenden
Unterkapitel 2.2 wird eine Übersicht über wichtige SQL Standard-Datentypen gegeben.
3) Für jede Spalte SPj ist ein Wertebereich Wj festgelegt. Wj ist zunächst durch den
Wertebereich WDT gegeben, der durch den Datentyp dtj festgelegt ist. Falls für die
Spalte SPj eine Integritätsbedingung Ij gesetzt ist, kann dadurch der Wertebereich
eingeschränkt werden. Es gilt dann: Wj ك WDT.
Def.1: Die unter 1), 2) und 3) genannten Metadaten bilden das Relationenschema
RS(T) der Tabelle T. Man schreibt: RS (T) = { (Aj , dtj , Wj) | 1 ≤ j ≤ m }. In der
Formulierung des Relationenschemas kann man statt des Wertebereichs Wj auch die
Integritätsbedingung Ij einsetzen: RS (T) = { (Aj , dtj , Ij) | 1 ≤ j ≤ m }.
Jede relationale Datenbank RDB kann als Vereinigungsmenge von Tabellen Tk
angesehen werden (1 ≤ j ≤ L; L ∈ N):

 3

ܤܦܴ ൌ ራ ܶ݇
௅

௞ୀଵ

Daher gilt für das Relationenschema der gesamten Datenbank RS(RDB):

ܴܵሺܴܤܦሻ ൌ ራ ܴܵሺܶ݇ሻ
௅

௞ୀଵ

Anm.1: Jede Zeile zi einer Tabelle T (1 ≤ i ≤ n; n ∈ N) kann als m-Tupel dargestellt
werden (m = Anzahl der Spalten von T): zi = (wi1 , wi2 , ..., wij , ... , wim). Hierbei ist
jedes wij ist der Wert eines Attributs Aj bzw. einer Spalte SPj. Da wir für jedes Attri-
but Aj den Wertebereich Wj kennen, ist jede Zeile zi als m-Tupel Element des
kartesischen Produkts der Wertebereiche W1 , W2 ,...,Wm :

zi אW1 x W2 x ... x Wk
Die Tabelle T ist somit Teilmenge des kartesischen Produkts der Wertebereiche Wj.
Als Formel dargestellt: T ك W1 x W2 x ... x Wk. Damit ist T auch eine mathemati-
sche Relation. Dieses hat zur Folge, dass in der Theorie relationaler Datenbanken
sowohl der Aufbau der relationalen Datenbank als auch die SQL-Befehle zum Lesen
und Schreiben auf Tabellen vollständig mit Mitteln der relationalen Algebra

 4
beschrieben werden können. Die SQL-Befehle werden dabei als relationale
Operatoren spezifiziert.
2.2 SQL-Datentypen
Die Datentypen von SQL sind normiert. Jüngere Normen sind z.B. SQL:1999 und
SQL:2003. Leider implementieren alle DBMS-Produkte diese Normen nicht 1:1.
Wichtige Abweichungen bei Oracle™ sind nachfolgender Tabelle auch dokumentiert.
Nr. SQL-Datentyp Zweck Beispielwerte Oracle™

Spezifika
(1) char(n) Zeichenkette mit fester

Länge n (nאԳ)
‘Haus‘

(2) varchar(n) Zeichenkette mit
variabler Länge, mit
maximal n Zeichen

‘Karl der
Große‘

varchar2(n)

(3) clob character large object
(4) integer ganze Zahlen z (zאԺ)

mit −231 ≤ z ≤ 231−1
-1035 bzw.
2345

number

(5) float für Gleitpunktzahlen
(entspricht IEEE-8-Byte
Gleitpunktzahl), d.h. für

-3.78e-2 bzw.
2561.61

 5
rationale Zahlen qאԷ

(6) decimal(p,q) für rationale Festpunkt-
zahlen mit insgesamt p
Dezimalstellen, davon q
Nachkommastellen

3170924.56
mit (p,q)=(9,2)
bzw. 1.2798
mit (p,q)=(5,4)

number(p,q)

(7) date für Datumsangaben ‘2013-10-16‘
(8) time für Zeitangaben ‘11:30:49‘
(9) timestamp Kombination aus

Datums- und
Zeitangabe

 date

2.3 Der Sprachumfang von SQL
Die Structured Query Language (SQL) ist eine genormte Anfrage-, Definition- und
Transaktionskontrollsprache für relationale Datenbanken. SQL ist eine deklarative
Programmiersprache im Unterschied zu Java oder C, die imperative Programmierspra-
chen sind.
Bei einer imperativen Programmiersprache wird durch eine Sequenz von
Anweisungen genau beschrieben, wie ein bestimmtes Resultat maschinell ermittelt
werden soll.

 6
Bei einer deklarativen Programmiersprache wird in der Hauptsache nur spezifiziert,
welches Resultat ermittelt werden soll. D.h. hier wird die Problembeschreibung
formuliert. Wie das entsprechende Resultat ermittelt werden soll, bestimmt bei einer
interpretierten deklarativen Programmiersprache wie SQL der zugehörige
Kommandointerpreter. Ein Beispiel einer anderen deklarativen Programmiersprache ist
PROLOG, eine Sprache zur Programmierung prädikatenlogischer Formeln.
Der Sprachumfang von SQL besteht im Wesentlichen aus drei Teilmengen:
a) Data Definition Language (DDL): Die DDL enthält Befehle, die auf dem
Schemakatalog des DBS agieren und somit der Verwaltung von Metadaten dienen.
Wichtige Befehle der DDL sind:
Befehl Zweck
CREATE TABLE Anlegen einer Tabelle. Hierbei werden alle

Metadaten einer Tabelle festgelegt.
ALTER TABLE Änderungen von Metadaten einer Tabelle.
DROP TABLE Löschen aller Metadaten und aller Nutzdaten einer

Tabelle.
b) Data Manipulation Language (DML): Zur DML gehören die Befehle, die zur
Verwaltung der Nutzdaten einer Tabelle dienen. Hierzu gehören schreibende Befehle
als auch der lesende Befehl SELECT:
Befehl Zweck

 7
INSERT Einfügen einer neuen Zeile in eine Tabelle.
UPDATE Ändern einzelner Spaltenwerte in einer oder

mehreren Zeilen einer Tabelle.
DELETE Löschen einer oder mehrerer Zeilen einer Tabelle
SELECT Lesen von einer oder mehreren Zeilen einer oder

mehrerer Tabellen, die logisch miteinander
verknüpft sind.

c) Data Control Language (DCL): Zur DCL gehören die Befehle zur Verwaltung von
Transaktionen und zur Verwaltung von Zugriffsrechten.
Befehl Zweck
BEGIN Definition einer Transaktion.
COMMIT Änderung einer DB nach korrekter Durchführung

der Transaktion.
ROLLBACK Zurücksetzung der DB in den Zustand vor Beginn

der Transaktion.
GRANT Zuteilung von Zugriffsrechten an Nutzer.
REVOKE Widerrufen von Zugriffsrechten.

 8
2.4 DDL Befehle
a) Eine Syntaxbeschreibung des Befehls CREATE TABLE zum Anlegen einer
Tabelle:
CREATE TABLE tabname
(sp1 dt1 [sp1_IntBed],
 sp2 dt2 [sp2_IntBed],
 … … …,
 spN dtN [spN_IntBed]
 [, TabIntBed])

Erläuterung:
sp1, ..., spN:Attribute (Spaltennamen);
dt1, ..., dtN: Datentyp der Spalten 1 bis N;
spi_IntBed: Integritätsbedingung der Spalte i (1 ≤ i ≤ N)
Tab_IntBed: Integritätsbedingung, die für die ganze Tabelle wirksam ist.
BSP.1: Anlegen einer Tabelle Kunde mit den Attributen knr (Kundennummer, PRIK),
knam (Kundenname), plz (Postleitzahl mit der sachlichen Integritätsbedingung 1000 ≤
plz ≤ 99999) und ort (Lieferort des Kunden, MUSS-Attribut):
CREATE TABLE Kunde
(knr integer PRIMARY KEY,
 knam char (30) NOT NULL,

 9
 plz integer CHECK(1000<=plz AND plz<=99999),
 ort varchar(50) NOT NULL)

b) Eine Syntaxbeschreibung des Befehls ALTER TABLE zur Änderung einer
Tabelle:
ALTER TABLE tabname modus SP_IntBed1 [, …, SP_IntBedK]

Erläuterung:
modus: Art der Änderung: ADD: hinzufügen, MODIFY: überschreiben, DROP:
löschen (insbesondere: DROP COLUMN: löschen einer Spalte).
SP_IntBedi: hinzugefügte, überschriebene oder geänderte Spalte und / oder
Integritätsbedingung (1 ≤ i ≤ K).
BSP.2: Hinzufügen der Spalte strasse (Lieferanschrift mit Straße und Hausnummer)
mit Integritätsbedingung NOT NULL (MUSS-Attribut) in die Tabelle Kunde:
ALTER TABLE Kunde ADD strasse varchar(30) NOT NULL

BSP.3: Das Attribut plz der Tabelle Kunde mit der zusätzlichen Integritätsbedingung
NOT NULL ausstatten:
ALTER TABLE Kunde MODIFY plz integer NOT NULL

BSP.4: Löschen eines Attributs kredit in der Tabelle Kunde:
ALTER TABLE Kunde DROP COLUMN kredit

 10

c) Eine Syntaxbeschreibung des Befehls DROP TABLE zum Löschen einer
Tabelle:
DROP TABLE tabname

Hinweis: Der Befehl DROP TABLE löscht eine Tabelle vollständig: Alle Nutz- und
Metadaten werden gelöscht. Man sollte mit diesem Befehl besonders vorsichtig
umgehen.
BSP.5: Löschen der Tabelle Gartikel:
DROP TABLE Gartikel

2.5 Die schreibenden DML Befehle
a) Eine Syntaxbeschreibung des Befehls INSERT zum Einfügen einer neuen Zeile
in eine Tabelle:
INSERT INTO tabname(sp1, sp2, …, spN)

VALUES(w1, w2, …, wN)

Erläuterung: Der INSERT Befehl hat zwei Klauseln: (1) Die Spaltenklausel (sp1, sp2,
…, spN), die angibt, welche Spaltenpositionen der Zeile mit Werten zu füllen ist;

 11
 (2) Die Werteklausel (w1, w2, …, wN), die die Werte enthält, die gemäß
Spaltenklausel einzufüllen sind.
Die Spaltenklausel ist optional. Die Werteklausel ist notwendig. Falls keine
Spaltenklausel angegeben ist, müssen mit der Werteklausel alle gemäß ihrer
Integritätsbedingung notwendigen Spaltenpositionen gefüllt werden. Dabei ist die
Reihenfolge der Spalten gemäß der aktuellen Spaltenfolge im Tabellenschema
einzuhalten. Da Abweichungen zu Fehler führen, ist die Nutzung der Spaltenklausel zu
empfehlen, weil dann die Wertefolge in der Werteklausel nach der Folge in der
Spaltenklausel richten muss. Die Werte müssen der Syntax für Konstanten in SQL
folgen:

SQL-
Datentyp

Allgemeine Konstante Anmerkung

integer NNN…N N: eine
Dezimalziffer

float,
decimal(p,q)

aaa…a.bb..b a, b:
Dezimalziffern

char(n),
varchar(m)

‘XXX … XXX‘ X: ein ASCII-
Zeichen

date TO_Date('21.10.2013','DD.MM.YYYY') Oracle-
spazifisch

 12
date Date'2013-10-23' Allgemein

BSP.6: Einfügen einer Zeile in die Tabelle Kunde:
INSERT INTO Kunde(knr,knam,plz,ort,strasse,kredit,aedat)
VALUES(107,'Meyer GmbH',53999,'Bonn','Feuerbach 777',
1000.00, TO_Date('21.10.2013','DD.MM.YYYY'))

b) Eine Syntaxbeschreibung des Befehls UPDATE zur Änderung einer oder
mehreren Zeilen einer Tabelle:
UPDATE tabname SET sp1=WA1, sp2=WA2, …, spN=WAn

WHERE LOG_BED

Erläuterung: Der UPDATE Befehl hat zwei Klauseln: (1) Die SET-Klausel, die
beschreibt, welche Spaltenposition spK (1 ≤ K ≤ n, spK ist der Spaltenname) mit dem
Inhalt eines Wertausdrucks WAK zu überschreiben ist. WAK ist im einfachsten Falle
eine Konstante. WAK kann aber auch gemäß des Datentyps der Spalte aus einem
Spaltennamen, zulässigen Operatoren und ggfls. eines SQL-Ausdrucks
zusammengesetzt sein. (2) Die WHERE-Klausel, die mit einer logischen Bedingung die
Zeilenmenge einschränkt, auf die die Änderungsoperation ausgeführt wird.
BSP.7: Ändern der gesamten Anschrift eines Kunden (knr=107):
UPDATE Kunde SET plz=50789, ort='Koeln', strasse='Amselweg
17' WHERE KNR=107

 13
BSP.7: Erhöhen der Preise aller Artikel um 5 Prozent:
UPDATE Artikel SET preis=1.05*preis

c) Eine Syntaxbeschreibung des Befehls DELETE zum Löschen einer oder
mehrerer Zeilen einer Tabelle:
DELETE FROM tabname WHERE LOG_BED

Erläuterung: Mit der WHERE-Klausel des DELETE Befehls wird die Menge der
Zeilen bestimmt, die zu löschen sind. Hinweis: Ist keine WHERE-Klausel angegeben,
werden alle Zeilen der Tabelle gelöscht! Also ist Vorsicht geboten.
BSP.8: Löschen des Kunden mit knr=108:
DELETE FROM Kunde WHERE KNR=108

 14
2.6 Das SELECT
Das SELECT ist der Befehl zum lesenden Zugriff auf Tabellen einer relationalen
Datenbank. Das SELECT ist ein mächtiger Befehl mit einer Reihe von Klauseln.
Beschreibung des allgemeinen Aufbaus eines SELECT Befehls:
SELECT [selectArt] spaltenauswahl FROM tabListe

WHERE LOG_BED
[GROUP BY spaltenliste]
[HAVING LOG_BED]
[ORDER BY spaltenfolge]

Jede ausgeführte SELECT-Anfrage produziert eine Ergebnisliste. Die Ergebnisliste hat
den Aufbau einer temporären Tabelle. Der Knotenaufbau der Ergebnisliste ist durch die
spaltenauswahl bestimmt. Die Knoten sind die Zeilen der Ergebnistabelle. Man
kann sagen, jede SELECT-Anfrage transformiert eine zu lesende Tabelle in eine
Ergebnistabelle.
Anm.1: Eine minimale Form der SELECT-Anfrage besteht aus einer einfachen Liste
von ausgewählten Spalten sp1, sp2, …, spN einer Tabelle T:
SELECT [selectArt] spaltenauswahl FROM T

BSP.9: Auf die Tabelle KUNDE, wie sie in BSP.6 und BSP.7 mit Daten gefüllt wurde,
wird folgende SELECT-Anfrage gestellt:

 15
SELECT KNR, KNAM, ORT, AEDAT FROM Kunde

Die Ergebnistabelle (Ergebnisliste) hat dann beispielsweise folgenden Aufbau:
107 Meyer GmbH Koeln 21.10.13
109 Schulz KG Bonn 23.10.13
110 Schmitz, Josef Koeln 28.10.13
115 Schmitz, Josef Leverkusen 28.10.13

In folgender Abbildung ist die Ergebnistabelle zum SELECT aus BSP.9 als Liste
dargestellt:
< ABB.X: ERGEBNISLISTE>

BSP.10: Würde man sich nur auf die Spalten KNAM und AEDAT beschränken wollen,
würde folgende SELECT-Anfrage gestellt:
SELECT KNAM, AEDAT FROM Kunde

Die Ergebnistabelle (Ergebnisliste) hat dann folgenden Aufbau:
Meyer GmbH 21.10.13
Schulz KG 23.10.13
Schmitz, Josef 28.10.13
Schmitz, Josef 28.10.13

Im folgenden gehen wir nun die verschiedenen Klauseln des SELECT-Befehls durch:

 16
A) Die Klausel selectArt steuert, ob doppelte Zeilen unterdrückt werden.
Folgende Einträge sind möglich: selectArt := ALL|DISTINCT|UNIQUE
Hierbei gilt: ALL : Alle Zeilen werden ausgegeben. Dieses ist der Default.
DISTINCT: Doppelte Zeilen werden unterdrückt. UNIQUE: Synonym zu DISTINCT.

BSP.11: Im Unterschied zum BSP.10 wird mit dem folgenden Aufruf
SELECT UNIQUE KNAM, AEDAT FROM Kunde
folgendes Ergebnis erzielt, an man erkennen kann, dass die doppelte Ergebniszeile zum
Eintrag KNAM=‘Schmitz, Josef‘ unterdrückt wurde:
Schulz KG 23.10.13
Meyer GmbH 21.10.13
Schmitz, Josef 28.10.13

B) Die spaltenauswahl-Klausel bestimmt, wie der Spaltenaufbau der
Ergebnistabelle inhaltlich strukturiert sein soll. Die Klausel kann aus komplexen
Ausdrücken aufgebaut sein. In der Beschreibung gehen wir hier den Weg von
einfachen zu komplexen Ausdrücken.
B1) spaltenauswahl := * : Alle Spalten der zulesenden Tabelle T sind für die
Ergebnistabelle ausgewählt.
BSP.12: SELECT * FROM Kunde
Im Ergebnis treten alle Spalten der Tabelle Kunde auf:

 17
107 Meyer GmbH 50789 Koeln Amselweg 17 1000 21.10.13 ET
109 Schulz KG 53999 Bonn Windmühle 99 3000 23.10.13 HA
110 Schmitz, Josef 50111 Koeln Hohes Tor 7 1500 28.10.13 HA
115 Schmitz, Josef 51373 Leverkusen Pulvermühle 4000 28.10.13 CH

B2) spaltenauswahl := sp1, sp2, …, spN : Nur die angegebenen Spalten
sp1, sp2, …, spN der zulesenden Tabelle T sind für die Ergebnistabelle ausgewählt.
Diese Form der Spaltenauswahl wurde bereits oben in der Anm.1, BSP.9 und BSP.10
diskutiert.
B3) spaltenauswahl := spAus[{, spAus}]: Hier besteht die
Spaltenauswahl aus SQL-Ausdrücken spAus , die aus
• Spaltennamen,
• Konstanten,
• Operatoren,
• Funktionen,
• SQL-Anfragen
zusammengesetzt sein können. Weiterhin kann jeder Ausdruck über die Klausel AS
xAlias mit einem Aliasnamen xAlias verbunden sein.
B3.1) Operatoren und Funktionen für numerische Datentypen:
a) Numerische Operatoren: NOP := + | - | * | /

 18
b) Numerischer Elementarausdruck: spw1 NOP spw2 (spw1, spw2 sind
Spaltennamen oder Konstanten.
BSP.13: Berechnung des Kreditlimits der Kunden in US-Dollar (1 EUR = 1.3086 USD,
Stand 30.6.2013):
SELECT KNAM, KREDIT*1.3086 AS USKRED, ‘Stand:30.6.13’ FROM
Kunde
Diese Anfrage erzielt folgendes Ergebnis als CSV-Ergebnisliste. Die Spaltennamen der
Ergebnistabelle sind hier mitaufgeführt:
"KNAM";"USKRED";"'STAND:30.6.13'"
"Meyer GmbH ";1308,6;"Stand: 30.6.13"
"Schulz KG ";3925,8;"Stand: 30.6.13"
"Schmitz, Josef ";1962,9;"Stand: 30.6.13"
"Schmitz, Josef ";5234,4;"Stand: 30.6.13"

BSP:14: Umrechnung des Kreditlimits in US-Dollar, wobei der Umrechnungsfaktor
nicht als Konstante sondern durch eine eingebaute SELECT-Anfrage als
Spaltenausdruck ermittelt wird.
SELECT knr, knam, kredit, 'EUR', kredit * (SELECT
waehfaktor From Land where waehkenn='USD') AS USkred,
'USD' FRoM Kunde
Diese Anfrage erzielt folgendes Ergebnis als CSV-Ergebnisliste. Die Spaltennamen der
Ergebnistabelle sind hier mitaufgeführt:

 19
"KNR";"KNAM";"KREDIT";"'EUR'";"USKRED";"'USD'"
117;"Steigenberger Hustensaft ";5000;"EUR";6892;"USD"
107;"Meyer GmbH ";1000;"EUR";1378,4;"USD"
109;"Schulz KG ";3000;"EUR";4135,2;"USD"
110;"Schmitz, Josef ";1500;"EUR";2067,6;"USD"
115;"Schmitz, Josef ";4000;"EUR";5513,6;"USD"

Anm.2: Damit eine solche implizite SELECT-Anfrage funktioniert, müssen drei
Bedingungen passen: a) Es darf als Operand nur eine Spalte in der Spaltenauswahl des
eingebauten SELECT ausgewählt sein. b) Der Datentyp der ausgewählten Spalte muss
zum Operator, der dem eingebauten SELECT übergeordnet ist, passen. c) Die
Ergebnismenge des eingebauten SELECT darf nur aus einer Ergebniszeile bestehen.
c) Numerische Skalarfunktionen:

• Potenzfunktion: POW(a,b)
• Modulofunktion: MOD(n,m) (≡ n(mod m))
• Runden von x auf n Nachkommastellen: ROUND(x,n)
• Weitere Funktionen: EXP(x), LN(X), FLOOR(X), …

BSP:15: Runden der Preise der Tabelle Artikel auf eine Nachkommastelle:
SELECT artnr, artbez, round(preis,1) from Artikel
Diese Anfrage erzielt folgendes Ergebnis als CSV-Ergebnisliste:
"ARTNR";"ARTBEZ";"ROUND(PREIS,1)"
1;"Seife";1,1

 20
2;"Brot";2,4
3;"Hustensaft";4,5
4;"";1,2
5;"Kuchen";3,5

B3.2) Operatoren und Funktionen für Zeichenketten:

• Substring-Funktion: substr(x,v,b) (≡ Substring der Zeichenkette in Spalte x von
Position v bis Position b)

• Verkettung von Spaltenwerten: spa1||spa2
BSP:16: Anfrage auf Zeichenkettenspalten mit Verkettung und Substringbildung:
SELECT knr, substr(knam,1,5) as k1, ort||','||strasse as k2
from kunde
Diese Anfrage erzielt folgendes Ergebnis als CSV-Ergebnisliste:
"KNR";"K1";"K2"
117;"Steig";"Rütli,Tell Str.1"
107;"Meyer";"Koeln,Amselweg 17"
109;"Schul";"Bonn,Windmühle 99"
110;"Schmi";"Koeln,Hohes Tor 7"
115;"Schmi";"Leverkusen,Pulvermühle 1"

B3.3) Datumsfunktionen:
• CURRENT : liefert das aktuelle Datum
• TO_DATE(‘datumsangabe‘, ‘Formatstring‘)

 21

B3.4) Aggregatfunktionen:

• COUNT(*) : Anzahl der Ergebniszeilen
• SUM(spn) : Summe aller Werte der Spalte spn (gilt nur für Spalten mit

numerischem Datentyp)
• MAX(spn) : Maximum aller Werte der Spalte spn
• MIN(spn) : Minimum aller Werte der Spalte spn.

BSP:17: Anfrage auf die Artikeltabelle mit Aggregatfunktionen:
SELECT count(artnr), sum(preis), sum(preis)/count(artnr)
from artikel
Diese Anfrage erzielt folgendes Ergebnis als CSV-Ergebnisliste:
"COUNT(ARTNR)";"SUM(PREIS)";"SUM(PREIS)/COUNT(ARTNR)"
5;12,68;2,536

C) Die WHERE-Klausel
Die WHERE-Klausel schränkt mit einer logischen Bedingung LOG_BED die Menge
der Ergebniszeilen einer SELECT-Anfrage ein. Eine logische Bedingung ist aus
logischen Operatoren und Vergleichsausdrücken aufgebaut. Vergleichsausdrücke
haben die allgemeine Form: SPX VOP VWERT. Hierbei ist SPX ein Spaltenname,
VOP ein Vergleichsoperator und VWERT ein Vergleichswert. Vergleichswerte
können Konstanten oder SQL-Ausdrücke sein (vgl. B3)).

 22
C.1) Die logischen Operatoren sind: AND, OR, NOT .
C.2) Numerische Vergleichsoperatoren: =, !=, >=, <=, >, < .
C.3) Vergleichsoperatoren für Zeichenketten: =, !=, LIKE
C.4) Vergleichsoperatoren für NULL-Werte: IS NULL, IS NOT NULL
C.5) Mengenwertiger Vergleichsoperator: IN (mathematisch: x Element einer Menge
M).
Anm.3: Der LIKE-Operator vergleicht den Inhalt einer Spalte spx arbeitet mit einer
Zeichenkette vgl, die als Vergleichsmuster dient: spx LIKE vgl
Innerhalb des Vergleichsmusters können folgende Ersatzzeichen (Jokerzeichen, bzw.
Wildcards) verwendet werden: % : für einen beliebigen String, ?: für ein beliebiges
Zeichen.
Anm.4: Der IN-Operator prüft, ob der Inhalt einer Spalte spx in einer Vergleichsmenge
M vorkommt: spx IN M
Die Menge M kann dabei (a) als Menge von Konstanten oder (b) als Ergebnismenge
eines eingebetteten SELECT angegeben werden:
zu (a): select * from kunde where branche IN ('HA', 'CH')
zu (b): s. BSP.20.
BSP:18: Gesucht werden die Kunden des PLZ-Bereichs 5, deren Name mit „Sch“
beginnt:

 23
SELECT * from kunde where 50000<=plz and plz<60000 and
knam LIKE 'Sch%'
Diese Anfrage erzielt folgendes Ergebnis als CSV-Ergebnisliste:
"KNR";"KNAM";"PLZ";"ORT";"STRASSE";"KREDIT";"AEDAT";"BRANCHE"
109;"Schulz KG ";53999;"Bonn";"Windmühle 99";3000;23.10.13;"HA"
110;"Schmitz, Josef ";50111;"Koeln";"Hohes Tor 7";1500;28.10.13;"HA"
115;"Schmitz, Josef ";51373;"Leverkusen";"Pulvermühle
1";4000;28.10.13;"CH"

BSP:19: Anfrage auf NULL-Werte in der Artikeltabelle:
SELECT * from artikel where artbez is null
Diese Anfrage erzielt folgendes Ergebnis als CSV-Ergebnisliste:
"ARTNR";"ARTBEZ";"PREIS"
4;"";1,23

BSP.20: Lesen aller Kunden, die aus einem EU-Land kommen. Hierbei wird die
Vergleichsmenge für die Elementbeziehung durch ein SELECT auf die Tabelle Land
erzeugt, wobei nur die Länder ausgewählt werden, die zur Ländergruppe ‘EU‘ gehören:
SELECT * FROM Kunde WHERE kland IN (SELECT LKURZ FROM Land
WHERE LGR = ‘EU’)

D) Die GROUP BY-Klausel

 24
Eine Gruppe in SQL ist eine Teilmenge U von Zeilen einer Tabelle T, die bezüglich
einer Spalte spx, dem sog. Gruppenbegriff, alle den gleichen Wert haben. Hat T n
Zeilen und hat spx k verschiedene Werte mit k ≤ n, so gilt: ܃૚ ׫ ૛܃ ׫ ׫ … ܓ܃ ൌ .܂
Im nachfolgenden Beispiel hat die Kundentabelle n=5 Zeilen und k=3 verschiedene
Werte in der Spalte branche. Dadurch entstehen drei Gruppen, die mit Aggregatfunktio-
nen ausgewertet werden können.
BSP:21: Anfrage der Kundentabelle, die nach der Spalte branche gruppiert wird:
SELECT branche, count(knr), sum(kredit) from kunde Group
by branche
Diese Anfrage erzielt folgendes Ergebnis als CSV-Ergebnisliste:
"BRANCHE";"COUNT(KNR)";"SUM(KREDIT)"
"CH";2;9000
"HA";2;4500
"ET";1;1000

E) Die HAVING-Klausel
Mit der WHERE-Klausel konnte die Anfrage auf der Ebene von Zeilen einer Tabelle
eingeschränkt werden. Mit der HAVING-Klausel können logische Bedingungen für
Gruppen aufgestellt werden. In der Ergebnisliste sind dann nur die Gruppen vertreten,
die die logische Bedingung log_Bed erfüllen. Allg. Syntax: HAVING log_Bed
BSP:22: Anfrage auf die Gruppen der Kundentabelle, die mindestens 2 Elemente
haben:

 25
SELECT branche, count(knr), sum(kredit) from kunde Group
by branche HAVING COUNT(knr)>=2
Diese Anfrage erzielt folgendes Ergebnis als CSV-Ergebnisliste:
"BRANCHE";"COUNT(KNR)";"SUM(KREDIT)"
"CH";2;9000
"HA";2;4500

F) Die ORDER BY-Klausel
Die ORDER BY Klausel dient der Sortierung der Ergebnisliste nach Spalten. Es kann
jeweils aufsteigend (ASC (engl.: ascending)) bzw. absteigend (DESC (engl.: descen-
ding)) sortiert werden. ASC ist der Default. Die Reihenfolge in der Spaltenliste be-
stimmt die Sortierproirität. Allg. Syntax: ORDER BY Spaltenliste
BSP:23: Die Ergebnisliste wird aufsteigend nach Kundenname sortiert. Gibt es
mehrere Kunden gleichen Namens wird absteigend nach PLZ sortiert:
SELECT knr, knam, plz, kredit from kunde order by knam,
plz DESC
Diese Anfrage erzielt folgendes Ergebnis als CSV-Ergebnisliste:
"KNR";"KNAM";"PLZ";"KREDIT"
107;"Meyer GmbH ";50789;1000
115;"Schmitz, Josef ";51373;4000
110;"Schmitz, Josef ";50111;1500
109;"Schulz KG ";53999;3000
117;"Steigenberger Hustensaft ";4411;5000

 26
H) Die Mehrtabellen-Verarbeitung (JOIN)
Bei einem JOIN wird mit SELECT auf mehrere Tabellen zugegriffen. Insbesondere
hat man damit die Möglichkeit, Datensätze gemäß der logischen Verknüpfung
zwischen Tabellen, die durch Fremdschlüsselbeziehungen gegeben sind, aufzubereiten.
Das JOIN erzeugt aus den Tabellen, die in der Tabellenliste gegeben sind, ein
kartesisches Produkt. Beim natürlichen JOIN wird dieses kartesische Produkt durch
eine WHERE-Klausel, in der die FKEY-Bedingungen gesetzt sind, eingeschränkt.
BSP:24: Gegeben sind die Tabellen KUNDE und ARTIKEL. Wenn man das
Kaufverhalten eines Kunden in der Form „1 Kunde kauft n Artikel mit einer jeweiligen
Menge mn“ benötigt man eine Referenztabelle KUKAUFTA, die für jeden
Kaufvorgang eines Artikels eine Zeile anlegt und pro Zeile über eine FKEY-Beziehung
auf knr und eine FKEY-Beziehung auf artnr die logische Verknüpfung zur Kunden-
und zur Artikeltabelle verwaltet. Das Relationenschema dieser Tabelle wird
nachfolgend in Form eines CREATE TABLE Befehls gegeben:
CREATE TABLE KUKAUFTA
 (KKANR integer NOT NULL,
 KNR integer NOT NULL,
 ARTNR integer NOT NULL,
 MENGE integer NOT NULL,
 CONSTRAINT KUKAUFTA_PK PRIMARY KEY(KKANR)

 27
 CONSTRAINT KUKAUFTA_FK1 FOREIGN KEY ("ARTNR")
 REFERENCES ARTIKEL(ARTNR),
 CONSTRAINT KUKAUFTA_FK2 FOREIGN KEY ("KNR")
 REFERENCES KUNDE(KNR)
)

Das JOIN, mit dem nun die Verknüpfung der drei Tabellen KUNDE, ARTIKEL und
KUKAUFTA hergestellt wird, erzeugt das kartesische Produkt:
KUNDE x ARTIKEL X KUKAUFTA

Hier wird ein natürlicher JOIN aufgebaut, in dessen WHERE-Klausel die FKEY-
Bedingungen auf artnr und knr enthalten sind:
SELECT K.knr, substr(knam,1,12), A.artnr, artbez, menge,
 preis*menge as wert
FROM kunde K, Artikel A, KUKAUFTA B
WHERE k.knr=b.knr AND a.artnr=b.artnr

Diese Anfrage erzielt folgendes Ergebnis als CSV-Ergebnisliste:
"KNR";"SUBSTR(KNAM,1,12)";"ARTNR";"ARTBEZ";"MENGE";"WERT"
109;"Schulz KG ";1;"Seife";20;22
109;"Schulz KG ";5;"Kuchen";30;105
109;"Schulz KG ";3;"Hustensaft";1;4,5
107;"Meyer GmbH ";2;"Brot";11;25,85

 28
110;"Schmitz, Jos";1;"Seife";5;5,5
110;"Schmitz, Jos";2;"Brot";5;11,75
110;"Schmitz, Jos";5;"Kuchen";5;17,5

Anm.5: Ein JOIN ist in der Regel sehr RAM beanspruchend, da im Hintergrund immer
ein kartesisches Produkt aufgebaut wird. Im obigen Beispiel hat die Ergebnismenge des
natürlichen JOIN 7 Ergebniszeilen. Das Mengengerüst war dabei: 5 Kunden, 5 Artikel
und 7 KUKAUFTA-Zeilen. Im Hintergrund hatte das kartesische Produkt daher 175
Zeilen. Für DBS mit großen Tabellen sollten nach Möglichkeit JOINs nur einge-
schränkt benutzt werden.
Anm.6: Neben der klassischen Syntax, die wie in BSP.24 die Beziehung des
kartesischen Produkts modelliert, gibt es in SQL auch die JOIN- ON-Syntax, in der die
Verknüpfung mit der Referenztabelle in einer ON-Klausel hergestellt wird. Die
nachfolgende INNER-JOIN-ON-SELECT-Anfrage erzielt das gleiche Ergebnis, wie
die SELECT-Anfrage aus BSP.24:
Select kunde.knr, substr(knam,1,12), A.artnr, artbez,
 menge, preis*menge as wert
from kunde , Artikel A
Inner JOIN KUKAUFTA B ON a.artnr=B.artnr
where kunde.knr=B.knr

 29
Lernziele zu Kap.2: Relationale Datenbanken und SQL

1. Den allgemeinen Aufbau einer Tabelle und die mathematischen Begriffe des
kartesischen Produkts und der Relation erklären können.

2. Die Metadaten einer Tabelle als Relationenschema beschreiben können.
3. Wichtige SQL-Datentypen kennen.
4. Den Sprachumfang von SQL erläutern können.
5. Die Aufgaben und den Aufbau der DDL-Befehle CREATE TABLE, ALTER

TABLE und DROP TABLE bennenen können.
6. Die Syntax der DML-Befehle INSERT, UPDATE und DELETE kennen.
7. Das SELECT-Kommando mit seinen Klauseln kennen.
8. Erörtern können, welche Formen einer Mehrtabellenverarbeitung es in

einem SELECT geben kann.

