
 1
1. Allgemeines Datenbankmodell
1.1 Datenbankmanagementsysteme als Weiterentwicklung der Dateisystemfunk-

tionalität eines Betriebssystems
Standardbetriebssysteme (Windows, iOS, UNIX/Linux, …) bieten dem Anwendungs-
programmierer und Benutzer wichtige Kernfunktionalitäten1 an:

• das Prozesssystem zur Verwaltung zur Ausführung gebrachter Programme (z.B.
um nebenläufige Programme (Multitasking / Multiprogramming) zu unter-
stützen),

• das Dateisystem, um alle Dateien eines Rechners für den lesenden bzw.
schreibenden Zugriff unabhängig von der Hardware des Hauptspeichers (RAM)
bzw. der Sekundärspeichermedien (Festplatte, USB-Stick, CD-ROM, …) zu
verwalten.

Def.1: Eine Datei ist eine nach sachlichen Gesichtspunkten aufgebaute Sammlung von
Daten. Dateien werden vom Betriebssystem in Verzeichnissen zusammengefasst und
unter einem Dateinamen, eventuellen Hinweisen auf die Organisation der Datei (z.B.
über die Endung des Dateinamens (.txt, .doc, .xml2, .htm / .html, …)), dem Schutzsta-

1 vgl. Carsten Vogt: „Betriebssysteme“, Heidelberg (Spektrum Akademischer Verlag) 2001, ISBN 3-
8274-1117-3, S. 47ff., S. 171ff..
2 XML := Extensible Markup Language.

 2
tus (z.B. in Linux: r, w, x : der Benutzer darf die Datei lesen (read), darf in die Datei
schreiben (write) bzw. darf die Datei ausführen (execute)) und dem Adressbereich
(Startadresse, Länge), worunter sich die Datei auf dem Speichermedium befindet,
verwaltet. Die Startadresse einer Datei wird vom Betriebssystem gekapselt und ist für
den Benutzer bzw. das Anwendungsprogramm nicht sichtbar.
Dateien sind in der Regel höchst unterschiedlich strukturiert bzw. organisiert: Nach
ihrem inneren Aufbau können Dateien dahin gehend unterschieden werden, ob sie aus
Datensätzen aufgebaut sind (semistrukturiert, z.B. CSV-Dateien3, XML-Dateien mit
DTD, …) oder es nicht sind (unstrukturiert, z.B. Pixeldateien für Bilder oder
Audiodaten, Fließtextdateien, …). Bestehen alle Datensätze einer semistrukturierten
Datei aus einer gleichen Folge von Attributen und kann jedem Attribut ein Datentyp
zugeordnet werden, dann spricht man von strukturierten Dateien. Für eine
strukturierte Datei hat man vereinfacht folgenden Aufbau:
→ Eine strukturierte Datei besteht aus n Datensätzen. (n ∈ N)

→ → Ein Datensatz besteht aus m Attributen (m ∈ N)

BSP.1: Zur Veranschaulichung der Begriffe betrachten wir folgende Textdatei
PERS.CSV, mit der einfache Personaldaten einer Firma verwaltet werden. Diese Datei
ist als CSV-Datei organisiert. Ein Datensatz PERSDS besteht aus den Attributen PNR

3 CSV:= Comma Separated Value.

 3
(Personalnummer), PNAM (Name der Person), GEHALT (Monatsgehalt), EJAHR
(Jahr des Eintritts in die Firma):
 1023;Müller;4380.20;2005
 1056;Mayer;3741.90;2009
 1015;Huber;5134.15;2003
 1044,Schmidt;4590.30;2011
Eine solche Datei würde in einer Firma typischerweise im Mehrprogrammbetrieb
verarbeitet, wobei die Programme teilweise nacheinander und teilweise nebenläufig
arbeiten (s. Abb.1):

Abb.1: Vereinfachtes Systemübersichtsdiagramm eines Personalverwaltungssystems.

 4
Legende zur Abb.1:
PABT := Personalabteilung
FA := Finanzamt
PI1 := Programm zur Einstellung eines Mitarbeiters
PI2UD := Programm zur Änderung von Personaldaten
P3B := Programm zur Gehaltsüberweisung
P4FA := Programm zur Abführung der Einkommensteuer

Die Struktur (Grammatik) eines Personaldatensatzes PERSDS kann formal z.B. als
Backus-Naur Form (BNF)4 beschrieben werden:
<PERSDS>::=<PNR>;< PNAM>;<GEHALT>;< EJAHR>
Def.2: Die Angaben zur Strukturbeschreibung einer Datei, die insbesondere den
Aufbau von Datensätzen beschreibt und alle Attribute von Datensätzen benennt, heißen
Metadaten einer Datei.
Ein zentrales Problem von Betriebssystemen ist, dass Dateisysteme standardmäßig
nicht mit einer Verwaltung von Metadaten für strukturierte Dateien ausgestattet ist.
Neben anderen Gründen hat dieses in der Geschichte der Informatik zur Entwicklung

4 Vgl. Gregor Büchel: „Praktische Informatik – Eine Einführung, Lehr- und Arbeitsbuch mit
Tafelbildern“, Wiesbaden (Springer Vieweg) 2012, ISBN 978-3-8348-1874-4. Kap.13: Beschreibung
einer Grammatik durch eine BNF, S.203ff.

 5
von Datenbankmanagementsystemen als Weiterentwicklung der Dateisystem -
funktionalität eines Betriebssystems geführt.
Zur Funktionsfähigkeit eines Programmsystems, das Dateibestände gemeinsam im
Mehrprogrammbetrieb nutzt, ist es notwendig, dass alle Anwendungsprogramme die
gleiche Strukturbeschreibung der Dateibestände nutzen können und dass dafür der
Metadatenbestand auch maschinell verfügbar ist.

1.2 Anforderungen an die Funktionalität eines Datenbankmanagementsystems
Def.2: Eine Datenbank (DB) ist eine nach sachlichen Gesichtspunkten aufgebaute
Sammlung von strukturierten Daten, die unabhängig von Anwendungsprogrammen
verwaltet werden5. Ein Datenbankmanagementsystem (DBMS) ist ein System von
Software zur Verwaltung von Datenbanken. Ein Datenbanksystem (DBS) ist der
Verbund von einem DBS mit einer Vereinigung von Datenbanken.
In Kurzschreibweise: Datenbanksystem = DB + DBMS.
Eine Datenbank DB besteht in der Regel aus mehreren Datenbanksegmenten Si (1 ≤ i ≤
k). Je nach Datenbankmodell können die Segmente unterschiedlich aufgebaut sein:

5 Die Anwendungsunabhängigkeit (Kapselung) einer Sammlung strukturierter Daten wird auch
logische Datenunabhängigkeit genannt.

 6
Datenbankmodell Segmentart
relational Tabelle
objektorientiert Extent einer persistenten Klasse (=

Sammlung der serialisierten Objekte
einer persistenten Klasse)

fileorientiert (z.B. bei XML-
Datenbanken)

Datei

Ein allgemeines Datenbankmodell, das den Mehrprogrammbetrieb unterstützt, ist in
nachfolgender Abbildung dargestellt:

 7
Die Anforderungen an die Funktionalität eines DBMS können in folgenden zehn
Funktionen zusammengefasst werden:
1. Persistenz: Unter Persistenz versteht man die dauerhafte und strukturtreue Spei-
cherung von Datenbeständen. Dauerhafte Speicherung wird auf Sekundärspeicherme-
dien (z.B. Festplatten) ausgeführt. Die strukturtreue Speicherung von Datensätzen er-
fordert, dass komplexe Datentypen, die solche Datensätze beschreiben ohne besonderen
Programmieraufwand gespeichert und gelesen werden können.
BSP.2: Ein JAVA-Datentyp, um die Inhalte eines Personaldatensatzes PERDS, wie er
in BSP.1 dargestellt wurde, ohne besonderen Programmieraufwand strukturtreu zu
speichern, ist folgende serialisierte Klasse:
class PERSDS implements Serializable
{ int pnr; /* PNR: Personalnummer */
 String pnam; /* PNAM: Name der Person */
 double gehalt; /* GEHALT: Monatsgehalt */
 int ejahr; /* EJAHR: Jahr des Eintritts in die Firma */
}

Das strukturtreue Schreiben bzw. Lesen in einem Schreibvorgang bzw. in einem
Lesevorgang pro Instanz (eine Instanz entspricht einem Datensatz) wird für serialisier-
te Klassen in JAVA mit den Methoden writeObject() bzw. readObject() der Klassen
ObjectOutputStream bzw. ObjectInputStream implementiert.

 8
Ohne DBMS müssen Instanzen dieser Klasse, wenn man sie in eine Datei schreibt
bzw. sie aus einer Datei liest, durch einen besonderen Programmieraufwand
verwaltet werden. Im Mehrprogrammbetrieb hat man hier das Problem der
Datenabhängigkeit: Alle lesenden Programme und alle weiterverarbeitende
Programme (Update- und Lösch-Programme) müssen die innere Funktionsweise des
ursprünglichen schreibenden Programms kennen, um korrekt auf die gespeicherten
Daten zugreifen zu können. Ziel ist die Datenunabhängigkeit: Hierbei braucht kein
Programm die innere Funktionsweise des ursprünglichen schreibenden Programms zu
kennen.
Bei einem DBMS wird die dauerhafte und strukturtreue Speicherung von
Datenbeständen durch eine Metadatenverwaltung gesteuert. Hierzu genügt es, den
Datentyp der Daten, die dauerhaft gespeichert werden sollen, in einen Datentyp zu
transformieren, der im Data-Dictionary des DBMS eingetragen wird (siehe
Funktionalität 3. Verwaltung eines Schema-Katalogs (Data-Dictionary)).
2. Sekundärspeicherverwaltung: Die Sekundärspeicherverwaltung implementiert
Direktzugriffe. Direktzugriff bedeutet, dass neben gewissen RAM-Operationen für den
lesenden Zugriff (z.B. binäre Suche in einer doppelt verketteten Liste oder Suche in
einem flachen Suchbaum) nur ein lesender Zugriff auf einen Nutzdatensatz, der auf
einem Sekundärspeichermedium liegt, erforderlich ist.

 9
Anm.1: In der Regel wird eine Sekundärspeicherverwaltung mit Direktzugriff über
eine Indexverwaltung implementiert. Hierbei wird neben der Nutzdatendatei (z.B.
PERS.DAT) eine Indexdatei (z.B. PERS.IDX) aufgebaut. Um eine Indexdatei
aufzubauen benötigt man die Offsets der einzelnen Nutzdatensätze. Ein Offset ist die
Position des ersten Bytes eines Datensatzes relativ zum Dateianfang.
PERS.DAT:
Offset PNR PNAM GEHALT EJAHR …

0 1023 Müller 4380.20 2005 …
100 1056 Mayer 3741.90 2009 …
170 1015 Huber 5134.15 2003 …
230 1051 Mayer 3880.95 2011 …
300 1044 Schmidt 4590.30 2011 …

In der Nutzdatendatei wird der Offset nicht gespeichert, er kann durch
Betriebssystemfunktionen des Dateisystems oder des DBMS ermittelt werden. Eine
Indexdatei besteht aus Indizes. Ein Index ist ein Paar der Form (Schlüsselwert, Offset).
Der Schlüsselwert ist bezogen auf ein Attribut des Nutzdatensatzes. Z.B. PNR
(eindeutig) oder PNAM (mehrdeutig). In einer Indexdatei stehen die Paare in einer
nach Schlüsselwerten sortierten Folge. Z.B. PERS.IDX ist nach PNR-Werten
aufsteigend sortiert. Zugriffe mittels einer sortierten Indexfolge nennt man ISAM
(index sequential access method).

 10
PERS.IDX:

PNR Offset
1015 170
1023 0
1044 300
1051 230
1056 100

Um beim Lesen Direktzugriffe ausführen zu können, ist beim Einfügen ein erhöhter
Aufwand an RAM-Operationen erforderlich, der aber gegenüber Leseoperationen auf
einem Sekundärspeicher zeitlich sehr klein ist.
BSP.3: Die Indexdatei wird für eine Arbeitssitzung mit mehreren Einfüge- und
Leseoperationen in den RAM als doppelt verkettete Liste geladen. Die Liste wird mit
binärer Suche durchsucht.
Suche: Person mit PNR = 1051.
=> 2 Vergleichsschritte in der Indexliste (RAM-Operationen).
=> 1 Direktzugriff auf Nutzdatensatz (hier Offset = 230) (Operation auf
Sekundärspeicher).
Einfügen eines neuen Datensatzes:

 11
=> 1 Datensatz ans Ende der Nutzdatendatei anhängen (Datensatz: PNR:1027;
PNAM:Schmitz; … wird bei OFFSET 360 eingefügt): 1 Operation auf
Sekundärspeicher.
=> Indexdatensatz einfügen (Das Paar (1017,360) in PERS.IDX): Lineare Suche in
doppelt verketteter Liste: Aufwand ~ n/2 RAM-Operationen.
Anm.2: Als Praktikumsversuch wird eine Sekundärspeicherverwaltung mit einer
ISAM-Verwaltung aufgebaut. Hierbei wird die JAVA-Klasse RandomAccessFile aus
dem Paket java.io verwendet.
Anm.3: Je nach DBMS kann die Indexverwaltung im RAM unterschiedlich organisiert
sein: Bei relationalen Datenbanken ist der Index im RAM als Suchbaum (Varianten
von Bayer-Bäumen (≅ (2m+1)-Bäumen)) organisiert. Bei bestimmten NoSQL-
datenbanken (z.B. Cassandra) ist er als Hash-Tabelle organisiert, d.h. die Position, an
der das Paar (Schlüsselwert, Offset) in der Tabelle einsortiert ist, wird als Funktion des
Schlüsselwerts berechnet.
3. Verwaltung eines Schema-Katalogs (Data-Dictionary): Der Schema-Katalog
enthält sämtliche Metadaten einer DB. Abhängig vom Datenmodell, das dem DBMS zu
Grunde liegt, werden die Datenbanksegmente, aus der die DB aufgebaut ist, die ihnen
zugehörigen Entitäten und die Attribute, aus denen die Entitäten aufgebaut sind,
definiert.

 12
BSP.4: Tabellarische Übersicht zu den Schemaelementen in Abhängigkeit vom
Datenmodell des DBMS:

DBMS-Daten-
modell

Segmenttyp Entität Attributtyp

relational Tabellentyp Zeile Datentyp einer
Spalte

objektorientiert Persistente
Klasse

Instanz einer
persistenten Klasse

Datentyp eines
Klassenattributs

XML-
Datenbank

Dokumenttyp
eines XML-
Wurzelelements

Ein von der Wurzel
abhängiges XML-
Element

Elementdefinition
und Attributedefini-
tion des abhängigen
XML-Elements

fileorientiert
(z.B. bei hierar-
chischen Daten-
banken)

Dateityp Datensatz Datentyp eines
Datensatzattributs

graphorientiert Knotentyp und
Kantentyp

ein Knoten bzw.
eine Kante

Datentyp einer
Knoten- bzw. einer
Kantenfärbung

 13
Für alle Segmente einer DB werden im Schemakatalog der Segmentaufbau (d.h. der
Segmenttyp bzw. das Segmentschema) definiert. Zum Segmentschema gehören die
folgenden Angaben:

a) Der Segmentname.
b) Eine Strukturbeschreibung, wie die Entitäten der Segmente aus Attributen

aufgebaut sind.
c) Die Datentypen aller Attribute, aus denen die Entitäten bestehen und

Einschränkungen ihrer Wertebereiche (Integritätsbedingungen).
d) Angaben, wie verschiedene Segmente einer Datenbank untereinander logisch

verknüpft sind.
BSP.5: Die Instanzen der Klasse Artikel sollen in einer Datenbank DB1 gespeichert
werden. Die Datenbank DB1 soll ein relationales Datenmodell haben. Jeder Artikel,
d.h. jede Instanz der Klasse Artikel besteht aus n Zutaten (n ∈N). Jede Zutat ist
Instanz einer Klasse Zutat. Beide Klassen sind nachfolgend gegeben:
class Artikel
{ int artnr; /* Artikelnummer */
 String artname;
 double preis;
 LinkedList<Zutat> zutaten;
}

 14
class Zutaten
{int zutnr; /* Zutatennummer */
 String zubez; /* Name der Zutat */
 double quant; /* Menge der Zutat */
 String einheit; /* Maßeinheit der Zutat */
}

Anm.4: Logische Verknüpfungen zwischen Segmenten (d.h. Tabellen) einer
relationalen Datenbank werden durch spezielle Attribute, sog. Schlüsselattribute
(engl. key) hergestellt. Um eine logische Verknüpfung der Form „ zu einer Entität vom
Typ A gehören n Entitäten vom Typ B“ herzustellen geht man zweistufig vor:

(1) Man definiert unter der Menge der Attribute von A und B jeweils ein Attribut
mit eindeutiger Wertefolge. Dieses ist das Primärschlüsselattribut (primary key
=: PRIK).

(2) Man definiert in dem Entitätentyp B ein Attribut x, dass nur Werte des PRIK-
Attributs von A annehmen kann. Hierbei können in n Entitäten von B ein
gleicher PRIK-Wert angenommen werden. Ein solches Attribut x heißt
Fremdschlüsselattribut (foreign key =: FKEY).

Eintragungen ins Data-Dictionary der DB1:
E0) Name von DB1 = ARTIKELDB
E1.1) Name der Artikeltabelle = ARTTAB

 15
E1.2) Eintragungen für die Attribute von ARTTAB:

Attribut Datentyp6 Bedingung
artnr int PRIK
artname char(50) Ø
preis float7 Ø

E2.1) Name der Zutatentabelle = ZUTTAB
E2.2) Eintragungen für die Attribute von ZUTTAB

Attribut Datentyp Bedingung
zutnr int PRIK
zubez char(50) Ø
quant float Ø
einheit char(10) Ø
zartnr int FKEY(ARTTAB.artnr)

6 Angabe des Datentyps bezogen auf das relationale Datenmodell.
7 Hier ist das Attribut preis als Gleitpunktzahl modelliert. In der Datenbankwelt werden für
Anwendungen in der Finanzwirtschaft bevorzugt Festpunktzahlen verwendet. Diese können mit
einem Datentyp decimal(p,q) modelliert werden. Hierbei ist p die Anzahl aller Dezimalstellen und q
die Anzahl der Nachkommastellen. In Java kann dieses mit dem Datentyp java.math.BigDecimal
modelliert werden.

 16
4. Integritätskontrolle: Integrität bedeutet, dass schreibende Operationen eine DB
von einem korrektem Zustand der Daten nur in einen neuen korrekten Zustand
überführen dürfen. Generell werden drei Arten von schreibenden Operationen
unterschieden:

(1) Einfügen von neuen Entitäten (=: INSERT).
(2) Ändern von vorhandenen Entitäten (=: UPDATE)
(3) Löschen von vorhandenen Entitäten (=: DELETE)

Um die Integrität zu sichern, gibt es im Data-Dictionary die Möglichkeit,
Integritätsbedingungen festzulegen: Man unterscheidet drei Arten von
Integritätsbedingungen:

(1) Typintegrität: Bei den schreibenden Operationen INSERT und UPDATE
dürfen in ein Attribut A mit Datentyp dtA nur Werte vom Typ dtA geschrieben
werden. Längenbedingungen, wie z.B.: n beim dtA = char(n) oder p,q beim dtA
= decimal(p,q) (Datentyp für rationale Festpunktzahlen) gehören zur
Datentypangabe

(2) Referentielle Integrität: Wenn zwei Entitäten aus zwei Segmenten durch eine
Fremdschlüsselbedingung (FKEY) aufeinander Bezug nehmen, darf bei
schreibenden Operationen die Fremdschlüsselbeziehungen nicht zerstört werden.
BSP. (s. BSP.5): Beim INSERT bzw. UPDATE einer Zeile in ZUTTAB wird
geprüft, ob der Wert des Attributs zartnr in der Spalte ARTTAB.artnr
vorkommt. Falls nein, wir die schreibende Operation abgewiesen. Beim

 17
DELETE einer Zeile in ARTTAB wird geprüft, der artnr-Wert als zartnr-
Wert einer Zeile von ZUTTAB vorkommt. Falls ja, wird der DELETE-Versuch
abgewiesen.

(3) NULL Integrität: Bei Attributen wird unterschieden, ob es MUSS-Attribute
oder KANN-Attribute sind. Bei einem MUSS-Attribut muss das Attribut mit
einem zulässigen Wert gemäß Wertebereich gefüllt sein. Bei einem KANN-
Attribut, kann das Attribut leer bleiben. D.h. es wird in diesem Fall mit einem
„leeren Wert“ (NULL-Wert) gefüllt. Der NULL-Wert kann mathematisch mit
der leeren Menge verglichen werden. Er kann je nach Datentyp nicht mit der
Zahl 0 oder dem leeren String (““) verglichen werden.

(4) Sachliche Integrität (Wertintegrität): Mit einer sachlichen Integritätsbedingung
IBed(A) kann eine anwendungsbezogene Einschränkung des Wertebereichs
WdtA des gegebenen Datentyps dtA des Attributs A durchgesetzt werden. Der
durch IBed(A) eingeschränkte Wertebereich WA ist mathematische Teilmenge
von WdtA: WA ك WdtA

BSP.6: Gegeben ist das Attribut PLZ (deutsche Postleitzahl) einer Tabelle KUNDEN.
Der Datentyp von PLZ ist dtPLZ = int. Der Wertebereich des Datentyps int ist:
Wint = { z א Ժ | -231 ≤ z ≤ 231-1} (231 ≈ 2,1 Milliarden).
Die sachliche Integritätsbedingung für PLZ ist IBed(PLZ) : 1000 ≤ z ≤ 99999 . Damit
gilt für den Wertebereich des Attributs PLZ WPLZ = { z א Wint | 1000 ≤ z ≤ 99999}.

 18
Daran ist auch ersichtlich, dass die Integritätsbedingung den Wertebereich des
Datentyps für den Wertebereich des Attributs einschränkt. Es gilt nämlich:
 WPLZ ك Wint
Anm.5: Allgemein kann jedes Attribut in einen Schema-Katalog mittels eines Tripels
(A, dtA, IBed(A)), wobei A das Attribut, dtA der Datentyp von A und IBed(A) die
Integritätsbedingung von A ist, eingetragen werden. Liegt keine Integritätsbedingung
vor, wird die leere Bedingung Ø eingetragen.
BSP.7: In einer Tabelle KUNDE sollen die Entitäten, die in einem Anwendungspro-
gramm als Instanzen einer Klasse Kunde auftreten, persistent gespeichert werden.
 class Kunde
{ int knr; /* Kundennummer */
 String name; /* Kundenname */
 int plz; /* Kunden-PLZ */
}

Die Einträge in den Schema-Katalog können für die Attribute der Tabelle KUNDE
analog zu E1.2) und E2.2) tabellarisch spezifiziert werden:
E3.2) Einträge in den Schema-Katalog für die Attribute der Tabelle KUNDE

Attribut Datentyp Bedingung
knr int PRIK
name char(50) Ø

 19
plz int 1000 ൑ plz ൑ 99999

Oder sie können in Tripelnotation angegeben werden8:
AF(KUNDE)={ (knr,int, PRIK), (name, char(30), Ø), (plz, int, 1000 ൑ plz ൑ 99999)}

5. Interpretation einer Anfragesprache: Um auf Daten einer DB lesend oder
schreibend zugreifen zu können, stellt das DBMS eine Anfragesprache zur Verfügung.
Das DBMS enthält einen Interpreter für Kommandos der Anfragesprache. Die
Anfragesprache ist abhängig vom Datenmodell des DBMS.

DBMS-Daten-
modell

Kürzel Anfragesprache

relational SQL Structured Query Language
objektorientiert OQL Object Query Language
XML nativ XQUERY XQUERY
hierarchisch DLI Data Language Interface
graphorientiert GQL Graph Query Language

8 AF steht hier für den Eintrag der Attributfolge in das Schema der Tabelle KUNDE.

 20
Anm.6: Für Anfragesprachen gibt es Einbettungen in höhere Programmiersprachen:
a) für SQL: ESQL/C (in C), ODBC (in C++) <Open Database Connectivity>, JDBC
(in Java) <Java Database Connectivity> (vgl. Paket: java.sql).
b) für OQL: Z.B. db4O/OQL.
6 . Verwalten von Benutzersichten (VIEW): Jede DB hat in der Regel verschiedene
Benutzergruppen. Jede Benutzergruppe hat eventuell unterschiedliche Anforderungen
für lesende und schreibende Zugriffe auf Segmente bzw. einzelne Attribute. Weiterhin
kann für bestimmte Benutzergruppen festgelegt sein, dass sie nur verdichtete Attribut-
werte lesen. können. Diese unterschiedlichen Formen des Zugriffs nennt man Benutzer-
sicht.
BSP.8: Wir betrachten die Tabellen ARTTAB und KUNDE. Weiterhin eine Tabelle
UMSATZ. Die Tabelle ARTTAB ist noch um das Attribut gfken (Gefahrgutkennzei-
chen) ergänzt. Die Tabelle UMSATZ hat folgende Schema-Einträge:

Attribut Datentyp Bedingung
umnr int PRIK
uartnr int FKEY(ARTTAB.artnr)
uknr int FKEY(KUNDE.knr)
umenge float Ø
wert decimal(11,2) Ø
uwoche int 1 ൑ uwoche ൑52

 21
In Bezug auf diese drei Tabellen kann es in einer Firma unterschiedliche
Benutzersichten bei lesenden und schreibenden Zugriffen geben. Z.B.:

Benutzergruppe Sichten
System Insert (umnr; knr, artnr)
Vertrieb Read(umnr, knr, artnr), Write(umenge, wert)
Kundenbeauftragter Read(umnr, knr, sum(wert) über alle Artikel für einen

Kunden), Write(name, plz)
Transportplaner Read(umnr, artnr, gfken, sum(umenge) pro plz)
Werksfeuerwehr Read(artnr), Write(gfken)
Produktmanager Read(artnr, sum(wert) über alle Kunden für einen Artikel)

Write(preis, artname)
7. Datenschutz: Datenschutz bedeutet nach Bundesdatenschutz den Schutz der Daten
in der Datenbank vor dem Zugriff unbefugter Dritter. D.h. das DBMS muss über
Sicherungsmechanismen, wie z.B. Authentifizierung verfügen. Während im
Dateisystem eines Betriebssystems der Zugriffsschutz nur auf eine gesamte Datei
funktioniert (z.B. ein Benutzer ist der einzige, der auf eine Datei Schreibrechte hat), ist
es im DBMS möglich, Schreibrechte (I, U, D) und Leserechte (S) auf einzelne
Attribute Benutzer bzw. Benutzergruppen festzulegen.

 22
8. Transaktionsverwaltung: Eine Transaktion ist eine Folge von schreibenden DB-
Zugriffen, die zu einer Gruppe zusammen gefasst werden. Für diese Gruppe gilt:
Entweder werden alle Zugriffe ausgeführt oder es wird kein Zugriff ausgeführt.
BSP.9: Eine Transaktion T für eine Löschoperationen auf die obige Artikel-Tabelle
und die zugehörigen Zeilen in der Zutaten-Tabelle hat folgenden Aufbau:
T = [dz_1, dz_2,, dz_N, dA] Hierbei ist dz_i ein DELETE auf eine Zutatenzeile (1
≤ i ≤ N) und dA ein DELETE auf die zugehörige Artikelzeile. Falls eine dieser
Löschoperationen scheitern würde, wäre die DB in einem inkonsistenten Zustand.
Daher können alle Löschoperationen von T nur gemeinsam ausgeführt werden oder die
DB bleibt in einem Störungsfall (z.B. Stromausfall) im alten Zustand.
Die Realisierung der Transaktionsverwaltung verlangt, dass alle Schreib-Operationen
in einer LOG-Datei notiert werden, mit der im Falle eines fehlerhaften Transaktionsen-
des die DB in ihren ursprünglichen Zustand zurückversetzt werden kann (Rollback).
Die Ausführung einer ganzen Transaktion nennt man commit.
Wikipedia charakterisiert Transaktionen durch die sog. ACID-Eigenschaften: „Bei der
Ausführung von Transaktionen muss das Transaktionssystem die ACID-Eigenschaften
garantieren:

• Atomarität (Atomicity): Eine Transaktion wird entweder ganz oder gar nicht
ausgeführt. Transaktionen sind also „unteilbar“. Wenn eine atomare Transaktion
abgebrochen wird, ist das System unverändert.

 23
• Konsistenz (Consistency): Nach Ausführung der Transaktion muss der

Datenbestand in einer konsistenten Form sein, wenn er es bereits zu Beginn der
Transaktion war.

• Isolation (Isolation): Bei gleichzeitiger Ausführung mehrerer Transaktionen
dürfen sich diese nicht gegenseitig beeinflussen.

• Dauerhaftigkeit (Durability): Die Auswirkungen einer Transaktion müssen im
Datenbestand dauerhaft bestehen bleiben. Die Effekte von Transaktionen dürfen
also nicht „mit der Zeit verblassen“ oder „aus Versehen verloren gehen“. Eine
Verschachtelung von Transaktionen ist wegen dieser Eigenschaft streng
genommen nicht möglich, da ein Zurücksetzen (Rollback) einer äußeren die
Dauerhaftigkeit einer inneren, bereits ausgeführten Transaktion verletzen
würde.“ [Wikipedia-Seite: Transaktion_(Informatik),
http://de.wikipedia.org/wiki/Transaktion_(Informatik) , letzter Besuch:
9.10.2013].

9. Synchronisation: An das DBMS besteht die Anforderung, zeitlich konkurrierende
Zugriffe (Delete, Insert, Update, Select) auf eine Entität (z.B. eine Tabellenzeile) zu
steuern. Für diese Steuerung müssen Regelmechanismen eingerichtet sein (z.B.:
„Schreiben geht vor Lesen“). Diese Mechanismen sind in ihren Algorithmen ähnlich zu
entsprechenden Mechanismen in einem Betriebssystem (z.B. Verfahren zum
wechselseitigen Ausschluss von Programmzugriffen auf eine gemeinsame Datei). Diese

 24
Mechanismen werden in einem DBMS zusammen mit den Methoden der
Sekundärspeicherverwaltung implementiert.
10. Datensicherung (Recovery): In festgelegten Arbeitsperioden (Arbeitstagen,
Stunden, Minuten) werden bestimmte oder alle Segmente einer DB auf
schnellschreibenden Sekundärspeichermedien gesichert. Dafür verfügt das DBMS über
Import- und Exportmechanismen. Die Datensicherung ist die Grundlage für die
Recoveryfähigkeit des DBMS nach Systemausfall. Die Import- / Exportmechanismen
unterstützen die strukturtreue Speicherung von DB-Segmenten in sequentiellen
Dateien. Hierbei werden sowohl die Nutz- als auch die Metadaten der DB-Segmente
gesichert. Für diese Mechanismen werden typische Austauschformate verwendet (Z.B.
.CSV, .XML, .SQL).
Lernziele zu Kap.1: Allgemeines Datenbankmodell

1. Unterschiede zwischen der Datenverwaltung in einem Dateisystem eines
Betriebssystem und der Datenverwaltung in einem DBMS benennen
können.

2. Die zehn Anforderungen an die Funktionalität eines DBMS erläutern
können.

