1. Allgemeines Datenbankmodell

1.1 Datenbankmanagementsysteme als Weiterentwicklung der Dateisystemfunk-
tionalitit eines Betriebssystems

Standardbetriebssysteme (Windows, 10S, UNIX/Linux, ...) bieten dem Anwendungs-
programmierer und Benutzer wichtige Kernfunktionalititen' an:

e das Prozesssystem zur Verwaltung zur Ausfiihrung gebrachter Programme (z.B.
um nebenldufige Programme (Multitasking / Multiprogramming) zu unter-
stiitzen),

e das Dateisystem, um alle Dateien eines Rechners flir den lesenden bzw.
schreibenden Zugriff unabhéngig von der Hardware des Hauptspeichers (RAM)
bzw. der Sekundirspeichermedien (Festplatte, USB-Stick, CD-ROM, ...) zu
verwalten.

Def.1: Eine Datei ist eine nach sachlichen Gesichtspunkten aufgebaute Sammlung von
Daten. Dateien werden vom Betriebssystem in Verzeichnissen zusammengefasst und

unter einem Dateinamen, eventuellen Hinweisen auf die Organisation der Datei (z.B.
iiber die Endung des Dateinamens (.txt, .doc, .xml’, .htm / .html, ...)), dem Schutzsta-

! vgl. Carsten Vogt: ,,Betriebssysteme*, Heidelberg (Spektrum Akademischer Verlag) 2001, ISBN 3-
8274-1117-3, S. 471t., S. 171ff..
2 XML := Extensible Markup Language.



2
tus (z.B. in Linux: r, w, x : der Benutzer darf die Datei lesen (read), darf in die Datei
schreiben (write) bzw. darf die Datei ausfiihren (execute)) und dem Adressbereich
(Startadresse, Lénge), worunter sich die Datei auf dem Speichermedium befindet,
verwaltet. Die Startadresse einer Datei wird vom Betriebssystem gekapselt und ist fiir
den Benutzer bzw. das Anwendungsprogramm nicht sichtbar.

Dateien sind in der Regel hochst unterschiedlich strukturiert bzw. organisiert: Nach
threm inneren Aufbau konnen Dateien dahin gehend unterschieden werden, ob sie aus
Datensitzen aufgebaut sind (semistrukturiert, z.B. CSV-Dateien’, XML-Dateien mit
DTD, ...) oder es nicht sind (unstrukturiert, z.B. Pixeldateien flir Bilder oder
Audiodaten, FlieStextdateien, ...). Bestehen alle Datensétze einer semistrukturierten
Datei aus einer gleichen Folge von Attributen und kann jedem Attribut ein Datentyp
zugeordnet werden, dann spricht man von strukturierten Dateien. Fiir eine
strukturierte Datei hat man vereinfacht folgenden Aufbau:

— Eine strukturierte Datei besteht aus n Datensitzen. (n € IN)
— — Ein Datensatz besteht aus m Attributen (m € IN)

BSP.1: Zur Veranschaulichung der Begriffe betrachten wir folgende Textdatei
PERS.CSV, mit der einfache Personaldaten einer Firma verwaltet werden. Diese Datei
ist als CSV-Datei organisiert. Ein Datensatz PERSDS besteht aus den Attributen PNR

3 CSV:= Comma Separated Value.



(Personalnummer), PNAM (Name der Person), GEHALT (Monatsgehalt), EJAHR
(Jahr des Eintritts in die Firma):

1023;Muller;4380.20;2005

1056 ;Mayer;3741.90;2009

1015;Huber;5134.15;2003

1044 ,Schmidt;4590.30;2011
Eine solche Datei wiirde in einer Firma typischerweise im Mehrprogrammbetrieb
verarbeitet, wobei die Programme teilweise nacheinander und teilweise nebenldufig

arbeiten (s. Abb.1):

@ s

PAT |
PRT LT me,f———j P3B [ BANK
o [T esv S |

Abb.1: Vereinfachtes Systemiibersichtsdiagramm eines Personalverwaltungssystems.



Legende zur Abb.1:

PABT := Personalabteilung

FA = Finanzamt

PI1 := Programm zur Einstellung eines Mitarbeiters
PI2UD := Programm zur Anderung von Personaldaten

P3B = Programm zur GehaltsUberweisung

PAFA := Programm zur Abfuhrung der Einkommensteuer

Die Struktur (Grammatik) eines Personaldatensatzes PERSDS kann formal z.B. als
Backus-Naur Form (BNF)* beschrieben werden:
<PERSDS>::=<PNR>;< PNAM>;<GEHALT>;< EJAHR>

Def.2: Die Angaben zur Strukturbeschreibung einer Datei, die insbesondere den
Aufbau von Datensitzen beschreibt und alle Attribute von Datenséitzen benennt, heil3en
Metadaten ciner Datei.

Ein zentrales Problem von Betriebssystemen ist, dass Dateisysteme standardmaBig
nicht mit einer Verwaltung von Metadaten fiir strukturierte Dateien ausgestattet ist.
Neben anderen Griinden hat dieses in der Geschichte der Informatik zur Entwicklung

* Vgl. Gregor Biichel: ,,Praktische Informatik — Eine Einfiihrung, Lehr- und Arbeitsbuch mit
Tafelbildern®, Wiesbaden (Springer Vieweg) 2012, ISBN 978-3-8348-1874-4. Kap.13: Beschreibung
einer Grammatik durch eine BNF, S.203ff.



von Datenbankmanagementsystemen als Weiterentwicklung der Dateisystem -
funktionalitét eines Betriebssystems gefiihrt.

Zur Funktionsfahigkeit eines Programmsystems, das Dateibestinde gemeinsam im
Mehrprogrammbetrieb nutzt, ist es notwendig, dass alle Anwendungsprogramme die
gleiche Strukturbeschreibung der Dateibestdnde nutzen konnen und dass dafiir der
Metadatenbestand auch maschinell verfiigbar ist.

1.2 Anforderungen an die Funktionalitit eines Datenbankmanagementsystems

Def.2: Eine Datenbank (DB) ist eine nach sachlichen Gesichtspunkten aufgebaute
Sammlung von strukturierten Daten, die unabhéngig von Anwendungsprogrammen
verwaltet werden’. Ein Datenbankmanagementsystem (DBMS) ist ein System von
Software zur Verwaltung von Datenbanken. Ein Datenbanksystem (DBS) ist der
Verbund von einem DBS mit einer Vereinigung von Datenbanken.

In Kurzschreibweise: Datenbanksystem = DB + DBMS.

Eine Datenbank DB besteht in der Regel aus mehreren Datenbanksegmenten Si (1 <1<
k). Je nach Datenbankmodell konnen die Segmente unterschiedlich aufgebaut sein:

> Die Anwendungsunabhingigkeit (Kapselung) einer Sammlung strukturierter Daten wird auch
logische Datenunabhéngigkeit genannt.



Datenbankmodell Segmentart
relational Tabelle
objektorientiert Extent einer persistenten Klasse (=

Sammlung der serialisierten Objekte
einer persistenten Klasse)

Datenbanken)

fileorientiert (z.B. bei XML-

Datei

Ein allgemeines Datenbankmodell, das den Mehrprogrammbetrieb unterstiitzt, ist in
nachfolgender Abbildung dargestellt:

([ wsew A )

e

\ Usen L )

SRS
ASE ]
S N XJ_

——
\ WU

P&aHA

PaML

PaHr

Frout-Eud.
WK Zeu v

DBMS

B(‘!‘\,-'.l‘;-u S5y 5‘}-’1“




Die Anforderungen an die Funktionalitit eines DBMS konnen in folgenden zehn
Funktionen zusammengefasst werden:

1. Persistenz: Unter Persistenz versteht man die dauerhafte und strukturtreue Spei-
cherung von Datenbestinden. Dauerhafte Speicherung wird auf Sekundérspeicherme-
dien (z.B. Festplatten) ausgefiihrt. Die strukturtreue Speicherung von Datensdtzen er-
fordert, dass komplexe Datentypen, die solche Datensitze beschreiben ohne besonderen
Programmieraufwand gespeichert und gelesen werden konnen.

BSP.2: Ein JAVA-Datentyp, um die Inhalte eines Personaldatensatzes PERDS, wie er
in BSP.1 dargestellt wurde, ohne besonderen Programmieraufwand strukturtreu zu
speichern, ist folgende serialisierte Klasse:

class PERSDS implements Serializable

{ 1Int pnr; /* PNR: Personalnummer */

String pnam; /* PNAM: Name der Person */

double gehalt; /* GEHALT: Monatsgehalt */

int ejahr; /* EJAHR: Jahr des Eintritts i1n die Firma */
by

Das strukturtreue Schreiben bzw. Lesen in einem Schreibvorgang bzw. in einem
Lesevorgang pro Instanz (eine Instanz entspricht einem Datensatz) wird fiir serialisier-
te Klassen in JAVA mit den Methoden writeObject() bzw. readObject() der Klassen
ObjectOutputStream bzw. ObjectInputStream implementiert.



Ohne DBMS miissen Instanzen dieser Klasse, wenn man sie in eine Datei schreibt
bzw. sie aus einer Datei liest, durch einen besonderen Programmieraufwand
verwaltet werden. Im Mehrprogrammbetrieb hat man hier das Problem der
Datenabhéngigkeit: Alle lesenden Programme und alle weiterverarbeitende
Programme (Update- und Losch-Programme) miissen die innere Funktionsweise des
urspriinglichen schreibenden Programms kennen, um korrekt auf die gespeicherten
Daten zugreifen zu konnen. Ziel ist die Datenunabhéingigkeit: Hierbei braucht kein
Programm die innere Funktionsweise des urspriinglichen schreibenden Programms zu
kennen.

Bei einem DBMS wird die dauerhafte und strukturtreue Speicherung von
Datenbestdnden durch eine Metadatenverwaltung gesteuert. Hierzu geniigt es, den
Datentyp der Daten, die dauerhaft gespeichert werden sollen, in einen Datentyp zu
transformieren, der im Data-Dictionary des DBMS eingetragen wird (siche
Funktionalitét 3. Verwaltung eines Schema-Katalogs (Data-Dictionary)).

2. Sekundirspeicherverwaltung: Die Sekundérspeicherverwaltung implementiert
Direktzugriffe. Direktzugriff bedeutet, dass neben gewissen RAM-Operationen fiir den
lesenden Zugriff (z.B. bindre Suche in einer doppelt verketteten Liste oder Suche in
einem flachen Suchbaum) nur ein lesender Zugriff auf einen Nutzdatensatz, der auf
einem Sekundirspeichermedium liegt, erforderlich ist.



Anm.1: In der Regel wird eine Sekundirspeicherverwaltung mit Direktzugriff iiber
eine Indexverwaltung implementiert. Hierbei wird neben der Nutzdatendatei (z.B.
PERS.DAT) eine Indexdatei (z.B. PERS.IDX) aufgebaut. Um eine Indexdatei
aufzubauen benétigt man die Offsets der einzelnen Nutzdatensétze. Ein Offset ist die
Position des ersten Bytes eines Datensatzes relativ zum Dateianfang.

PERS.DAT:

Offset | PNR | PNAM GEHALT | EJAHR
011023 |Muller |4380.20 | 2005

100 | 1056 | Mayer 3741.90 | 2009
170| 1015 |Huber 5134 .15 | 2003
230 | 1051 |Mayer 3880.95 | 2011
300 | 1044 | Schmidt [4590.30 | 2011

In der Nutzdatendatei wird der Offset nicht gespeichert, er kann durch
Betriebssystemfunktionen des Dateisystems oder des DBMS ermittelt werden. Eine
Indexdatei besteht aus Indizes. Ein Index ist ein Paar der Form (Schliisselwert, Offset).
Der Schliisselwert ist bezogen auf ein Attribut des Nutzdatensatzes. Z.B. PNR
(eindeutig) oder PNAM (mehrdeutig). In einer Indexdatei stehen die Paare in einer
nach Schliisselwerten sortierten Folge. Z.B. PERS.IDX ist nach PNR-Werten
aufsteigend sortiert. Zugriffe mittels einer sortierten Indexfolge nennt man ISAM
(index sequential access method).




PERS.IDX:

PNR | Offset
1015 170
1023 0
1044 300
1051 230
1056 100

Um beim Lesen Direktzugriffe ausfiihren zu kdnnen, ist beim Einfiigen ein erhdhter
Aufwand an RAM-Operationen erforderlich, der aber gegeniiber Leseoperationen auf
einem Sekundirspeicher zeitlich sehr klein ist.

BSP.3: Die Indexdatei wird fiir eine Arbeitssitzung mit mehreren Einfiige- und
Leseoperationen in den RAM als doppelt verkettete Liste geladen. Die Liste wird mit
binirer Suche durchsucht.

Suche: Person mit PNR = 1051.

=>2 Vergleichsschritte in der Indexliste (RAM-Operationen).

=> | Direktzugriff auf Nutzdatensatz (hier Offset = 230) (Operation auf
Sekundérspeicher).

Einfiigen eines neuen Datensatzes:

10



11
=> ] Datensatz ans Ende der Nutzdatendatei anhdngen (Datensatz: PNR:1027;
PNAM:Schmitz; ... wird bei OFFSET 360 eingefiigt): 1 Operation auf
Sekundirspeicher.
=> Indexdatensatz einfiigen (Das Paar (1017,360) in PERS.IDX): Lineare Suche in
doppelt verketteter Liste: Aufwand ~ n/2 RAM-Operationen.

Anm.2: Als Praktikumsversuch wird eine Sekundérspeicherverwaltung mit einer
ISAM-Verwaltung aufgebaut. Hierbei wird die JAVA-Klasse RandomAccessFile aus
dem Paket java.io verwendet.

Anm.3: Je nach DBMS kann die Indexverwaltung im RAM unterschiedlich organisiert
sein: Bei relationalen Datenbanken ist der Index im RAM als Suchbaum (Varianten

von Bayer-Bdaumen (2 (2m+1)-Bdumen)) organisiert. Bei bestimmten NoSQL-

datenbanken (z.B. Cassandra) ist er als Hash-Tabelle organisiert, d.h. die Position, an
der das Paar (Schliisselwert, Offset) in der Tabelle einsortiert ist, wird als Funktion des
Schliisselwerts berechnet.

3. Verwaltung eines Schema-Katalogs (Data-Dictionary): Der Schema-Katalog
enthdlt simtliche Metadaten einer DB. Abhédngig vom Datenmodell, das dem DBMS zu
Grunde liegt, werden die Datenbanksegmente, aus der die DB aufgebaut ist, die ithnen
zugehorigen Entititen und die Attribute, aus denen die Entitdten aufgebaut sind,
definiert.



BSP.4: Tabellarische Ubersicht zu den Schemaelementen in Abhiingigkeit vom
Datenmodell des DBMS:

DBMS-Daten- | Segmenttyp Entitiit Attributtyp
modell
relational Tabellentyp Zeile Datentyp einer
Spalte
objektorientiert | Persistente Instanz einer Datentyp eines
Klasse persistenten Klasse | Klassenattributs
XML- Dokumenttyp Ein von der Wurzel | Elementdefinition
Datenbank eines XML- abhingiges XML- | und Attributedefini-
Wurzelelements | Element tion des abhingigen
XML-Elements
fileorientiert Dateityp Datensatz Datentyp eines
(z.B. bei hierar- Datensatzattributs
chischen Daten-
banken)
graphorientiert | Knotentyp und | ein Knoten bzw. Datentyp einer
Kantentyp eine Kante Knoten- bzw. einer
Kantenfirbung




Fiir alle Segmente einer DB werden im Schemakatalog der Segmentaufbau (d.h. der
Segmenttyp bzw. das Segmentschema) definiert. Zum Segmentschema gehoren die
folgenden Angaben:
a) Der Segmentname.
b) Eine Strukturbeschreibung, wie die Entitéiten der Segmente aus Attributen
aufgebaut sind.
c) Die Datentypen aller Attribute, aus denen die Entitdten bestehen und
Einschrankungen ihrer Wertebereiche (Integritidtsbedingungen).
d) Angaben, wie verschiedene Segmente einer Datenbank untereinander logisch
verkniipft sind.

BSP.5: Die Instanzen der Klasse Artikel sollen in einer Datenbank DB1 gespeichert
werden. Die Datenbank DBI1 soll ein relationales Datenmodell haben. Jeder Artikel,

d.h. jede Instanz der Klasse Artikel besteht aus n Zutaten (n €N). Jede Zutat ist

Instanz einer Klasse Zutat. Beide Klassen sind nachfolgend gegeben:

class Artikel

{ Int artnr; /* Artikelnummer */
String artname;
double preis;
LinkedList<Zutat> zutaten;

}

13



14
class Zutaten

{int zutnr; /* Zutatennummer */
String zubez; /* Name der Zutat */
double quant; /* Menge der Zutat */
String einheit; /* MaBBeinheit der Zutat */

by

Anm.4: Logische Verkniipfungen zwischen Segmenten (d.h. Tabellen) einer
relationalen Datenbank werden durch spezielle Attribute, sog. Schliisselattribute
(engl. key) hergestellt. Um eine logische Verkniipfung der Form ,, zu einer Entitdt vom
Typ A gehoren n Entititen vom Typ B* herzustellen geht man zweistufig vor:

(1) Man definiert unter der Menge der Attribute von A und B jeweils ein Attribut
mit eindeutiger Wertefolge. Dieses ist das Primérschliisselattribut (primary key
=: PRIK).

(2) Man definiert in dem Entititentyp B ein Attribut x, dass nur Werte des PRIK-
Attributs von A annehmen kann. Hierbei konnen in n Entititen von B ein
gleicher PRIK-Wert angenommen werden. Ein solches Attribut x heif3t
Fremdschliisselattribut (foreign key =: FKEY).

Eintragungen ins Data-Dictionary der DBI1:
E0) Name von DB1 = ARTIKELDB
E1.1) Name der Artikeltabelle = ARTTAB



E1.2) Eintragungen fiir die Attribute von ARTTAB:

Attribut Datentyp6 Bedingung
artnr int PRIK
artname char(50) 1%
preis float’ 1%

E2.1) Name der Zutatentabelle = ZUTTAB

E2.2) Eintragungen fiir die Attribute von ZUTTAB
Attribut Datentyp Bedingung
zutnr int PRIK
zubez char(50) (0]
quant float %)
einheit char(10) 1%
zartnr int FKEY(ARTTAB.artnr)

% Angabe des Datentyps bezogen auf das relationale Datenmodell.

7 Hier ist das Attribut preis als Gleitpunktzahl modelliert. In der Datenbankwelt werden fiir

Anwendungen in der Finanzwirtschaft bevorzugt Festpunktzahlen verwendet. Diese konnen mit

15

einem Datentyp decimal(p,q) modelliert werden. Hierbei ist p die Anzahl aller Dezimalstellen und q

die Anzahl der Nachkommastellen. In Java kann dieses mit dem Datentyp java.math.BigDecimal
modelliert werden.



4. Integrititskontrolle: Integritit bedeutet, dass schreibende Operationen eine DB
von einem korrektem Zustand der Daten nur in einen neuen korrekten Zustand
iiberfiihren diirfen. Generell werden drei Arten von schreibenden Operationen
unterschieden:

(1) Einfligen von neuen Entitdten (=: INSERT).

(2) Andern von vorhandenen Entititen (=: UPDATE)

(3) Loschen von vorhandenen Entititen (=: DELETE)

Um die Integritit zu sichern, gibt es im Data-Dictionary die Moglichkeit,
Integritiitsbedingungen festzulegen: Man unterscheidet drei Arten von
Integritdtsbedingungen:

(1) Typintegritit: Bei den schreibenden Operationen INSERT und UPDATE

16

diirfen in ein Attribut A mit Datentyp dtA nur Werte vom Typ dtA geschrieben
werden. Lingenbedingungen, wie z.B.: n beim dtA = char(n) oder p,q beim dtA

= decimal(p,q) (Datentyp fiir rationale Festpunktzahlen) gehdren zur
Datentypangabe

(2) Referentielle Integritit: Wenn zwei Entititen aus zwei Segmenten durch eine

Fremdschliisselbedingung (FKEY') aufeinander Bezug nehmen, darf bei

schreibenden Operationen die Fremdschliisselbeziehungen nicht zerstort werden.

BSP. (s. BSP.5): Beim INSERT bzw. UPDATE einer Zeile in ZUTTAB wird

gepriift, ob der Wert des Attributs zartnr in der Spalte ARTTAB.artnr
vorkommt. Falls nein, wir die schreibende Operation abgewiesen. Beim



17
DELETE einer Zeile in ARTTAB wird gepriift, der artnr-Wert als zartnr-
Wert einer Zeile von ZUTTAB vorkommt. Falls ja, wird der DELETE-Versuch
abgewiesen.

(3) NULL Integritiit: Bei Attributen wird unterschieden, ob es MUSS-Attribute
oder KANN-Attribute sind. Bei einem MUSS-Attribut muss das Attribut mit
einem zuldssigen Wert gemill Wertebereich gefiillt sein. Bei einem KANN-
Attribut, kann das Attribut leer bleiben. D.h. es wird in diesem Fall mit einem
Lleeren Wert*“ (NULL-Wert) gefiillt. Der NULL-Wert kann mathematisch mit
der leeren Menge verglichen werden. Er kann je nach Datentyp nicht mit der
Zahl 0 oder dem leeren String (““‘) verglichen werden.

(4) Sachliche Integritiit (Wertintegritit): Mit einer sachlichen Integrititsbedingung
IBed(A) kann eine anwendungsbezogene Einschrinkung des Wertebereichs
WdtA des gegebenen Datentyps dtA des Attributs A durchgesetzt werden. Der
durch IBed(A) eingeschrinkte Wertebereich WA ist mathematische Teilmenge
von WdtA: WA € WdtA

BSP.6: Gegeben ist das Attribut PLZ (deutsche Postleitzahl) einer Tabelle KUNDEN.
Der Datentyp von PLZ ist dtPLZ = int. Der Wertebereich des Datentyps int ist:
Wint = {z € Z | -2’ <z<2"-1} (2*' = 2,1 Milliarden).

Die sachliche Integrititsbedingung fiir PLZ ist IBed(PLZ) : 1000 <z < 99999 . Damit
gilt fir den Wertebereich des Attributs PLZ WPLZ = { z € Wint | 1000 < z < 99999}.



18
Daran ist auch ersichtlich, dass die Integrititsbedingung den Wertebereich des
Datentyps fiir den Wertebereich des Attributs einschriankt. Es gilt ndmlich:
WPLZ € Wint

Anm.5: Allgemein kann jedes Attribut in einen Schema-Katalog mittels eines Tripels
(A, dtA, IBed(A)), wobei A das Attribut, dtA der Datentyp von A und IBed(A) die
Integritdtsbedingung von A ist, eingetragen werden. Liegt keine Integritdtsbedingung
vor, wird die leere Bedingung O eingetragen.

BSP.7: In einer Tabelle KUNDE sollen die Entitdten, die in einem Anwendungspro-

gramm als Instanzen einer Klasse Kunde auftreten, persistent gespeichert werden.
class Kunde

{ Iint knr; /* Kundennummer */
String name; /* Kundenname */
int plz; /* Kunden-PLZ */

by

Die Eintrdge in den Schema-Katalog konnen fiir die Attribute der Tabelle KUNDE
analog zu E1.2) und E2.2) tabellarisch spezifiziert werden:

E3.2) Eintrdge in den Schema-Katalog fiir die Attribute der Tabelle KUNDE
Attribut Datentyp Bedingung

knr int PRIK

name char(50) (0]




19
[ plz [ int 1000 < plz < 99999 |

Oder sie kénnen in Tripelnotation angegeben werden®:
AF(KUNDE)={ (knr,int, PRIK), (name, char(30), ©), (plz, int, 1000 < plz < 99999)}

5. Interpretation einer Anfragesprache: Um auf Daten einer DB lesend oder
schreibend zugreifen zu konnen, stellt das DBMS eine Anfragesprache zur Verfiigung.
Das DBMS enthilt einen Interpreter fiir Kommandos der Anfragesprache. Die
Anfragesprache ist abhéngig vom Datenmodell des DBMS.

DBMS-Daten- | Kiirzel Anfragesprache

modell

relational SQL Structured Query Language
objektorientiert | OQL Object Query Language
XML nativ XQUERY XQUERY

hierarchisch DLI Data Language Interface
graphorientiert | GQL Graph Query Language

¥ AF steht hier fiir den Eintrag der Attributfolge in das Schema der Tabelle KUNDE.



20
Anm.6: Fiir Anfragesprachen gibt es Einbettungen in héhere Programmiersprachen:
a) fiir SQL: ESQL/C (in C), ODBC (in C++) <Open Database Connectivity>, JDBC
(in Java) <Java Database Connectivity> (vgl. Paket: java.sql).
b) fiir OQL: Z.B. db40/OQL.

6 . Verwalten von Benutzersichten (VIEW): Jede DB hat in der Regel verschiedene
Benutzergruppen. Jede Benutzergruppe hat eventuell unterschiedliche Anforderungen
fiir lesende und schreibende Zugriffe auf Segmente bzw. einzelne Attribute. Weiterhin
kann fiir bestimmte Benutzergruppen festgelegt sein, dass sie nur verdichtete Attribut-
werte lesen. konnen. Diese unterschiedlichen Formen des Zugriffs nennt man Benutzer-
sicht.

BSP.8: Wir betrachten die Tabellen ARTTAB und KUNDE. Weiterhin eine Tabelle
UMSATZ. Die Tabelle ARTTAB ist noch um das Attribut gfken (Gefahrgutkennzei-
chen) ergénzt. Die Tabelle UMSATZ hat folgende Schema-FEintrége:

Attribut Datentyp Bedingung

umnr int PRIK

uartnr int FKEY(ARTTAB.artnr)
uknr int FKEY (KUNDE.knr)
umenge float %)

wert decimal(11,2) (0]

uwoche int 1 < uwoche <52




21
In Bezug auf diese drei Tabellen kann es in einer Firma unterschiedliche
Benutzersichten bei lesenden und schreibenden Zugriffen geben. Z.B.:

Benutzergruppe Sichten

System Insert (umnr; knr, artnr)

Vertrieb Read(umnr, knr, artnr), Write(umenge, wert)
Kundenbeauftragter | Read(umnr, knr, sum(wert) iiber alle Artikel fiir einen
Kunden), Write(name, plz)

Transportplaner Read(umnr, artnr, gfken, sum(umenge) pro plz)
Werksfeuerwehr Read(artnr), Write(gtken)
Produktmanager Read(artnr, sum(wert) liber alle Kunden fiir einen Artikel)

Write(preis, artname)

7. Datenschutz: Datenschutz bedeutet nach Bundesdatenschutz den Schutz der Daten
in der Datenbank vor dem Zugriff unbefugter Dritter. D.h. das DBMS muss tiber
Sicherungsmechanismen, wie z.B. Authentifizierung verfiigen. Wiahrend im
Dateisystem eines Betriebssystems der Zugriffsschutz nur auf eine gesamte Datei
funktioniert (z.B. ein Benutzer ist der einzige, der auf eine Datei Schreibrechte hat), ist
es im DBMS moglich, Schreibrechte (I, U, D) und Leserechte (S) auf einzelne
Attribute Benutzer bzw. Benutzergruppen festzulegen.



22
8. Transaktionsverwaltung: Eine Transaktion ist eine Folge von schreibenden DB-
Zugriffen, die zu einer Gruppe zusammen gefasst werden. Fiir diese Gruppe gilt:
Entweder werden alle Zugriffe ausgefiihrt oder es wird kein Zugriff ausgefiihrt.

BSP.9: Eine Transaktion T fiir eine Loschoperationen auf die obige Artikel-Tabelle
und die zugehdrigen Zeilen in der Zutaten-Tabelle hat folgenden Aufbau:
T=|[dz_1,dz_2,...., dz_N, dA] Hierbei ist dz_i ein DELETE auf eine Zutatenzeile (1
<1<N)und dA ein DELETE auf die zugehorige Artikelzeile. Falls eine dieser
Loschoperationen scheitern wiirde, wire die DB in einem inkonsistenten Zustand.
Daher konnen alle Loschoperationen von T nur gemeinsam ausgefiihrt werden oder die
DB bleibt in einem Storungsfall (z.B. Stromausfall) im alten Zustand.

Die Realisierung der Transaktionsverwaltung verlangt, dass alle Schreib-Operationen
in einer LOG-Datei notiert werden, mit der im Falle eines fehlerhaften Transaktionsen-
des die DB in ihren urspriinglichen Zustand zuriickversetzt werden kann (Rollback).
Die Ausfiihrung einer ganzen Transaktion nennt man commit.

Wikipedia charakterisiert Transaktionen durch die sog. ACID-Eigenschaften: ,,Bei der
Ausfiihrung von Transaktionen muss das Transaktionssystem die ACID-Eigenschaften
garantieren:
« Atomaritat (Atomicity): Eine Transaktion wird entweder ganz oder gar nicht
ausgefiihrt. Transaktionen sind also ,,unteilbar®. Wenn eine atomare Transaktion
abgebrochen wird, ist das System unverindert.



23

« Konsistenz (Consistency): Nach Ausfiihrung der Transaktion muss der
Datenbestand in einer konsistenten Form sein, wenn er es bereits zu Beginn der
Transaktion war.

« Isolation (Isolation): Bei gleichzeitiger Ausfithrung mehrerer Transaktionen
diirfen sich diese nicht gegenseitig beeinflussen.

« Dauerhaftigkeit (Durability): Die Auswirkungen einer Transaktion miissen im
Datenbestand dauerhaft bestehen bleiben. Die Effekte von Transaktionen diirfen
also nicht ,,mit der Zeit verblassen‘ oder ,,aus Versehen verloren gehen®. Eine
Verschachtelung von Transaktionen ist wegen dieser Eigenschaft streng
genommen nicht moglich, da ein Zuriicksetzen (Rollback) einer duBBeren die
Dauerhaftigkeit einer inneren, bereits ausgefiihrten Transaktion verletzen
wiirde.” [Wikipedia-Seite: Transaktion (Informatik),
http://de.wikipedia.org/wiki/Transaktion (Informatik) , letzter Besuch:
9.10.2013].

9. Synchronisation: An das DBMS besteht die Anforderung, zeitlich konkurrierende
Zugriffe (Delete, Insert, Update, Select) auf eine Entitdt (z.B. eine Tabellenzeile) zu
steuern. Fiir diese Steuerung miissen Regelmechanismen eingerichtet sein (z.B.:
»Schreiben geht vor Lesen®). Diese Mechanismen sind in ihren Algorithmen dhnlich zu
entsprechenden Mechanismen in einem Betriebssystem (z.B. Verfahren zum
wechselseitigen Ausschluss von Programmzugriffen auf eine gemeinsame Datei). Diese




24
Mechanismen werden in einem DBMS zusammen mit den Methoden der
Sekundirspeicherverwaltung implementiert.

10. Datensicherung (Recovery): In festgelegten Arbeitsperioden (Arbeitstagen,
Stunden, Minuten) werden bestimmte oder alle Segmente einer DB auf
schnellschreibenden Sekundirspeichermedien gesichert. Dafiir verfiigt das DBMS {iber
Import- und Exportmechanismen. Die Datensicherung ist die Grundlage fiir die
Recoveryfahigkeit des DBMS nach Systemausfall. Die Import- / Exportmechanismen
unterstiitzen die strukturtreue Speicherung von DB-Segmenten in sequentiellen
Dateien. Hierbei werden sowohl die Nutz- als auch die Metadaten der DB-Segmente
gesichert. Fiir diese Mechanismen werden typische Austauschformate verwendet (Z.B.
.CSV, XML, .SQL).

Lernziele zu Kap.1: Allgemeines Datenbankmodell

1. Unterschiede zwischen der Datenverwaltung in einem Dateisystem eines
Betriebssystem und der Datenverwaltung in einem DBMS benennen
konnen.

2. Die zehn Anforderungen an die Funktionalitiit eines DBMS erliutern
konnen.



